Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Radikale im Rückwärtsgang: Chemiker der TU Graz nehmen Mechanismus der Kunststoffherstellung unter die Lupe

23.11.2009
Obwohl polymere Materialien, also Kunststoffe, heutzutage bereits in vielerlei Form Einsatz finden, gibt es noch unzählige Rätsel rund um die langen Molekülketten.

Ein "Geheimnis" gelüftet hat nun ein Forscherteam der TU Graz: Sie haben einen "Rückwärtsgang" im Anfangsstadium von Polymerisationsprozessen - das sind die chemischen Reaktionen, bei denen mehrere Moleküle eines Stoffes lange Ketten und damit Kunststoff bilden - entdeckt.

Dadurch entsteht die Möglichkeit, bereits frühzeitig in das Kettenwachstum der Moleküle einzugreifen und so den entstehenden Kunststoff mit neuen Eigenschaften auszustatten.

Fest und widerstandsfähig: Konkret geht es um die photoinitiierte radikalische Polymerisation, bei der Radikale, also sehr reaktive Teilchen mit ungepaarten Elektronen, mittels Belichtung gebildet werden und damit die Entstehung von sehr widerstandsfähigen Kunststoffen bewirken. "Bisher war man der Auffassung, dass das Wachstum der Polymerketten stetig voranschreitet und erst in einem sehr fortgeschrittenen Stadium durch so genannte Abbruchreaktionen zu einem Ende kommt", so Georg Gescheidt-Demner vom Institut für Physikalische und Theoretische Chemie der TU Graz.

Neue Experimente zeigen aber: Diese Reaktion kann bereits in einem frühzeitigen Wachstumsstadium auch "zurücklaufen" und ist dadurch beeinflussbar und lenkbar. "Man kann sich das so vorstellen, dass das Kettenwachstum den Vorwärtsgang einlegt und gleichzeitig teilweise in den Rückwärtsgang schaltet - und in diesem Reaktionsstadium kann man eingreifen", erklärt Gescheidt-Demner.

Erkenntnis wirft weitere Fragen auf

Als sehr unerwartet bezeichnet der Wissenschafter diese fundamentale Erkenntnis, die einen bisher nicht berücksichtigten Schritt in den grundlegenden Reaktionen von Polymerisationsprozessen aufzeigt. "Welche Möglichkeiten diese neue Erkenntnis mit sich bringt, ist noch nicht abschätzbar - wir stehen nun ganz am Anfang und haben eine Reihe weiterer Fragen aufgeworfen", so Gescheidt-Demner. Potenzielle Anwendungsmöglichkeiten liegen aber in zahlreichen Bereichen, von verschiedenen Kunststoffen über Klarlackierungen in der Automobilindustrie bis zu Möbelbeschichtungen und Kontaktlinsen. Dass die Ergebnisse auf jeden Fall von zentraler Bedeutung sind, zeigt die Veröffentlichung des wissenschaftlichen Fachartikels im renommierten Chemie-Journal "Angewandte Chemie": Nur jedes vierte eingereichte Manuskript wird publiziert, von diesen erreichen wiederum nur etwa fünf Prozent den so genannten "VIP-Status" - wie der Artikel von Gescheidt-Demner und seinen Forschungskollegen.

Bildmaterial bei Nennung der angeführten Quellen honorarfrei verfügbar unter http://www.presse.tugraz.at/webgalleryBDR/data/radikale/index.htm

Originalarbeit: M. Griesser, D. Neshchadin, K. Dietliker, N. Moszner, R. Liska, G. Gescheidt "Maßgebliche Reaktionsschritte zu Beginn photoinitiierter radikalischer Polymerisationen", Angew. Chem. 2009, 121, 9523-9525.

Rückfragen:
Univ.-Prof. Mag.rer.nat. Dr.phil. Georg Gescheidt-Demner
Institut für Physikalische und Theoretische Chemie
E-Mail: g.gescheidt-demner@tugraz.at
Tel: +43 (0) 316 873 8230
Mobil: +43 (0) 664 40 36 949

Alice Senarclens de Grancy | idw
Weitere Informationen:
http://www.tugraz.at
http://www.presse.tugraz.at/webgalleryBDR/data/radikale/index.htm

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Studie InLight: Einblicke in chemische Prozesse mit Licht
22.11.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Eigenschaften von Magnetmaterialien gezielt ändern
16.11.2016 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie