Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pionier der Materialforschung

13.12.2016

„Man muss Dinge tun, die andere noch nicht getan haben. Chemikalien zusammenbringen, die andere noch nicht zusammen gebracht haben. Unter Bedingungen, die noch nicht ausprobiert wurden.“ Ulrich Kortz versteht sich als leidenschaftlicher Grundlagenforscher. 2008 entdeckte der Chemie-Professor an der Jacobs University eine neue Verbindungsklasse, die Polyoxopalladate. Jetzt hat der Wissenschaftler mit seinem Team eine weitere Unterklasse dieser funktionalen Materialien entwickelt. Sie kombiniert erstmals zwei Edelmetalle, Palladium und Silber in einer molekularen Metall-Sauerstoff-Verbindung – mit großem Nutzen für Wissenschaft und Industrie.

„Curiosity driven research“ – Neugier getriebene Forschung – nennt Kortz seine Vorgehensweise. „Wir versuchen, neue Verbindungen herzustellen. Mögliche Anwendungen spielen erst einmal keine große Rolle, sie ergeben sich automatisch.“


Ulrich Kortz, Professor für Chemie, Jacobs University

Kortz/Jacobs University


Strukturelle Darstellung von silberverkappten Polyoxopalladaten {Ag4Pd13} in der Seitenansicht (links) und Draufsicht (rechts); Pd dunkelblau, Ag orange, As grün, O rot.

Kortz/Jacobs University

Die Neugier trieb ihn dazu mit Edelmetallen wie Palladium und Platin zu experimentieren. 2007 entdeckte seine Forschungsgruppe die Polyoxopalladate; stabile und molekulare Edelmetall-Oxo Cluster – Oxo steht für Sauerstoff. Diese Verbindungen werden hergestellt aus simplen Ausgangsmaterialien in einer wässrigen Lösung und haben ein enormes Potential als Katalysatoren in industriellen Anwendungen.

„Wenn es etwas gibt, worauf ich richtig stolz bin, dann diese Verbindungsklasse. Wir haben etwas Bleibendes geschaffen, ein neues Forschungsgebiet – das gelingt ganz selten“, sagt Kortz. Die Entdeckung fand Eingang in Lehrbücher, sie wurde nicht nur in der Wissenschaftsgemeinde aufmerksam registriert, sondern auch in der chemischen Industrie.

Denn die Polyoxopalladate sind effiziente Katalysatoren, zum Beispiel bei der Oxidation oder Reduktion von organischen Verbindungen. Die Ausbeute oder auch die Selektivität erhöhen sich bei einem geringeren Energieaufwand – gerade für energieintensive Industrien bedeutet das eine enorme Kostenersparnis. Aktuell forscht Kortz im Rahmen eines dreijährigen Industrieprojekts mit einer der größten Chemiefirmen der Welt auf diesem Gebiet. In nur zwei Jahren wurden bereits vier Patente entwickelt.

Inzwischen hat sich die ursprüngliche Entdeckung zu einer ganzen Familie der Polyoxopalladate ausgeweitet. Rund 60 Derivate haben Kortz und sein Team an der Jacobs University systematisch entwickelt, fast alle wurden patentiert. Aus der neuesten Entwicklung, über die aktuell in der Fachzeitschrift „Angewandte Chemie“ berichtet wird, entstanden gleich zwei Patente.

Sie ist insofern besonders, als dass die Wissenschaftler erst einmal die beiden Edelmetalle Silber und Palladium in Form eines molekularen Metall-Oxo Clusters miteinander verbinden. Das sei ein weiteres Highlight, meint Kortz, denn diese Verbindungen bestehen aus einem Palladium-Oxo Kern, der von Silber-Atomen verkappt wird. Diese Verbindungen sind ideale Vorstufen für wohldefinierte Metall-Nanopartikel, die relevant sind für industrielle katalysatorische Anwendungen.

An dem nächsten Projekt, das die Deutsche Forschungsgemeinschaft (DFG) für drei Jahre finanziert, arbeitet das Team um Professor Kortz bereits. Es geht um so genannte „MOFs“, metall-organische Gerüstverbindungen, deren Hohlräume als Gasspeicher und zur Katalyse genutzt werden können. Materialforscher Kortz will die zwei Klassen von MOFs mit den Polyoxopalladaten verschmelzen, um neuartige, heterogene Katalysatoren zu bauen. „Sie werden einzigartig sein, das können wir schon versprechen“, meint er.

An der Jacobs University ist Ulrich Kortz einer der Pioniere. Nach Stationen in den USA, Italien, Frankreich und dem Libanon kam er 2002 nach Bremen – ein Jahr nachdem die internationale Universität die Türen für Studierende öffnete. Sein Labor konnte er selbst mitentwerfen, es ist aber nicht so, dass er nur dort gerne seine Zeit verbringt. Die Lehre schätzt er nicht weniger als die Forschung. „Die Kombination ist magisch. Immer wieder mit talentierten jungen Leuten zu tun zu haben, schärft die Sinne und hält selbst jung.“

Seine Studierenden unterrichtet er nicht nur in den Seminarräumen, sondern er will sie auch für die chemische Forschung begeistern. Einige von ihnen sind bereits ab dem ersten Semester in die Laboraktivitäten der Arbeitsgruppe von Ulrich Kortz einbezogen. „Mit der Möglichkeit, im Forschungslabor zu arbeiten, erfüllt sich für viele Bachelorstudierende ein Traum, nicht wenige sind sogar Co-Autoren von Publikationen.“ Seit 2002 hat Kortz mit seinem Team rund 220 wissenschaftliche Veröffentlichungen und 13 Patente realisiert.

Weitere Informationen:
Deutsches Paper: http://dx.doi.org/10.1002/ange.201608122
Englisches Paper: http://dx.doi.org/10.1002/anie.201608122
http://ukortz.user.jacobs-university.de
http://www.jacobs-university.de

Fragen beantwortet:
Ulrich Kortz | Professor für Chemie
u.kortz@jacobs-university.de | Tel.: +49 421 200-3235

Über die Jacobs University:
Die Jacobs University ist eine private, unabhängige, englischsprachige Universität in Bremen. Hier studieren junge Menschen aus der ganzen Welt in Vorbereitungs-, Bachelor-, Master- und PhD-Programmen. Internationalität und Transdisziplinarität sind die besonderen Kennzeichen der Jacobs University: Forschung und Lehre folgen nicht einem einzigen Lösungsweg, sie gehen Fragestellungen aus der Perspektive verschiedener Disziplinen an. Dieses Prinzip macht Jacobs Absolventen zu begehrten Nachwuchskräften, die erfolgreich internationale Karrierewege einschlagen.

Kontakt:
Kristina Logemann | Brand Management, Marketing & Communications
k.logemann@jacobs-university.de | Tel.: +49 421 200-4454

Kristina Logemann | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Angewandte Chemie DFG Edelmetalle Katalysatoren MOFs Materialforschung Palladium

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics