Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Material verspricht bessere Solarzellen

12.02.2013
Aus einer erst kürzlich entdeckten Materialklasse lässt sich eine neue Form von Solarzellen herstellen, fand ein Forschungsteam der TU Wien heraus.

Atomschicht für Atomschicht stellt man sie her, um ganz bestimmte Materialeigenschaften zu erzielen: Geschichtete Sauerstoff-Heterostrukturen sind eine neue Klasse von Materialien, die seit einigen Jahren großes Aufsehen in der Materialwissenschaft erregt.


Etwa so kann man sich die neuen Solarzellen vorstellen: In abwechselnd angeordneten ultradünnen Schichten bilden sich durch Lichteinstrahlung Elektronen und Löcher, oben und unten sind leitende Kabel angebracht, mit denen ein Stromkreis geschlossen wird. Links: Elias Assmann, rechts: Prof. Karsten Held
TU Wien


Sonnenlicht wird in der geschichteten Struktur in elektrischen Strom umgewandelt.
TU Wien

Ein Forschungsteam an der TU Wien konnte nun gemeinsam mit Kollegen aus den USA und Deutschland zeigen, dass sich daraus eine ganz neue, effizientere Klasse von ultradünnen Solarzellen bauen lässt. Die Forschungsergebnisse wurden nun im Journal „Physical Review Letters“ veröffentlicht.

Materialeigenschaften am Computer entdeckt

„Einzelne Atomlagen aus unterschiedlichen Sauerstoff-Verbindungen werden übereinandergeschichtet. Dabei entsteht ein Material, das ganz andere elektrische Eigenschaften haben kann, als die einzelnen Sauerstoff-Verbindungen alleine hätten“ erklärt Prof. Karsten Held vom Institut für Festkörperphysik der TU Wien. Um Materialvarianten mit präzise maßgeschneiderten Eigenschaften herstellen zu können, werden diese Strukturen in Computersimulationen untersucht. Dabei erkannte man an der TU Wien nun, welches Potenzial diese Strukturen für die Herstellung von Solarzellen haben.

Strom aus Licht

Das Grundprinzip der Solarzelle ist der photoelektrische Effekt, dessen einfachste Variante schon 1905 von Albert Einstein erklärt wurde: Wenn ein Lichtteilchen absorbiert wird, kann das dazu führen, dass Elektronen ihren Aufenthaltsort verlassen und elektrischer Strom zu fließen beginnt. Wird ein Elektron von seinem Platz entfernt, bleibt eine positiv geladene Stelle zurück, ein sogenanntes „Loch“. Sowohl die negativ geladenen Elektronen als auch die positiv geladenen Löcher können zum Stromfluss beitragen.

„Wenn in einer Solarzelle allerdings Elektron und Loch nicht als Strom abtransportiert werden, sondern sich wieder vereinen, dann ist alles wieder wie vorher – die Energie kann nicht genutzt werden“, erklärt Elias Assmann, der einen großen Teil der aufwändigen Computersimulationen an der TU Wien durchführte. „Der entscheidende Vorteil des neuen Materials ist: Hier herrscht auf mikroskopischen Größenordnungen ein starkes elektrisches Feld, das Elektronen und Löcher in entgegengesetzte Richtungen voneinander forttreibt.“ Das steigert die Effizienz der Solarzelle.

Aus zwei Isolatoren wird ein Metall
Eigentlich handelt es sich bei den Sauerstoff-Verbindungen, aus denen die neuen Materialien bestehen, um Isolatoren. Wenn man Schichten zweier geeignete Isolatoren aufeinanderpackt, entwickelt das Material an den Grenzflächen oben und unten erstaunlicherweise metallische Eigenschaften und leitet elektrischen Strom. „Das ist für uns von großer Bedeutung: Dadurch kann man oben und unten die elektrischen Ladungsträger sehr einfach ableiten und Strom fließen lassen“, sagt Karsten Held. Bei herkömmlichen Solarzellen aus Silizium muss man leitende Drähte aus Metall anbringen, um den Strom abzuführen – dadurch versperrt man aber einem Teil des Sonnenlichts den Weg ins Innere der Solarzelle.

Nicht alle Photonen werden von einer Solarzelle gleich effizient in elektrischen Strom umgewandelt. Für unterschiedliche Lichtfarben sind jeweils unterschiedliche Materialien besonders gut geeignet. „Bei den Oxid-Heterostrukturen kann man passende Eigenschaften erzielen, indem man geeignete chemische Elemente auswählt“, erklärt Prof. Peter Blaha vom Institut für Materialchemie. In den Simulationsrechnungen analysierte das Team Oxid-Schichten mit Lanthan und Vanadium, weil die dadurch aufgebauten Materialien besonders gut zur Strahlung der Sonne passen. „Es ist sogar möglich, verschiedene Schichttypen zu kombinieren, sodass unterschiedliche Lichtfarben optimal in unterschiedlichen Materialschichten in Strom verwandelt werden können“, sagt Elias Assmann.

Nächster Schritt: Praxistest

Unterstützt wurde das Team der TU Wien bei den Forschungen von Dr. Satoshi Okamoto vom Oak Ridge National Laboratory in Tennessee (USA) und von Prof. Giorgio Sangiovanni, einem ehemaligen Mitarbeiter der TU Wien, der nun an der Universität Würzburg forscht. In Würzburg sollen die neuen Solarzellen nun auch gebaut und getestet werden. „Die Produktion der Solarzellen aus Oxid-Schichten ist aufwändiger als bei herkömmlichen Solarzellen aus Silizium. Doch zumindest dort, wo besonders hohe Energie-Effizienz oder minimale Dicke gefragt ist, sollten die neuen Strukturen die bisherigen Silizium-Zellen ersetzen können.“, ist Karsten Held zuversichtlich.

Rückfragehinweise:

Prof. Karsten Held
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13710tarsten.held@tuwien.ac.at

Dipl.-Ing. Elias Assmann
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13759
elias.assmann@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.078701

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht CAU-Forschungsteam entwickelt neues Verbundmaterial aus Kohlenstoffnanoröhren
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Material mit vielversprechenden Eigenschaften
22.11.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungsnachrichten

Seminar „Leichtbau im Automobil- und Maschinenbau“ im Haus der Technik Berlin am 16. - 17. Januar 2018

23.11.2017 | Seminare Workshops

Biohausbau-Unternehmen Baufritz erhält von „ Capital“ die Auszeichnung „Beste Ausbilder Deutschlands“

23.11.2017 | Unternehmensmeldung