Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Material verspricht bessere Solarzellen

12.02.2013
Aus einer erst kürzlich entdeckten Materialklasse lässt sich eine neue Form von Solarzellen herstellen, fand ein Forschungsteam der TU Wien heraus.

Atomschicht für Atomschicht stellt man sie her, um ganz bestimmte Materialeigenschaften zu erzielen: Geschichtete Sauerstoff-Heterostrukturen sind eine neue Klasse von Materialien, die seit einigen Jahren großes Aufsehen in der Materialwissenschaft erregt.


Etwa so kann man sich die neuen Solarzellen vorstellen: In abwechselnd angeordneten ultradünnen Schichten bilden sich durch Lichteinstrahlung Elektronen und Löcher, oben und unten sind leitende Kabel angebracht, mit denen ein Stromkreis geschlossen wird. Links: Elias Assmann, rechts: Prof. Karsten Held
TU Wien


Sonnenlicht wird in der geschichteten Struktur in elektrischen Strom umgewandelt.
TU Wien

Ein Forschungsteam an der TU Wien konnte nun gemeinsam mit Kollegen aus den USA und Deutschland zeigen, dass sich daraus eine ganz neue, effizientere Klasse von ultradünnen Solarzellen bauen lässt. Die Forschungsergebnisse wurden nun im Journal „Physical Review Letters“ veröffentlicht.

Materialeigenschaften am Computer entdeckt

„Einzelne Atomlagen aus unterschiedlichen Sauerstoff-Verbindungen werden übereinandergeschichtet. Dabei entsteht ein Material, das ganz andere elektrische Eigenschaften haben kann, als die einzelnen Sauerstoff-Verbindungen alleine hätten“ erklärt Prof. Karsten Held vom Institut für Festkörperphysik der TU Wien. Um Materialvarianten mit präzise maßgeschneiderten Eigenschaften herstellen zu können, werden diese Strukturen in Computersimulationen untersucht. Dabei erkannte man an der TU Wien nun, welches Potenzial diese Strukturen für die Herstellung von Solarzellen haben.

Strom aus Licht

Das Grundprinzip der Solarzelle ist der photoelektrische Effekt, dessen einfachste Variante schon 1905 von Albert Einstein erklärt wurde: Wenn ein Lichtteilchen absorbiert wird, kann das dazu führen, dass Elektronen ihren Aufenthaltsort verlassen und elektrischer Strom zu fließen beginnt. Wird ein Elektron von seinem Platz entfernt, bleibt eine positiv geladene Stelle zurück, ein sogenanntes „Loch“. Sowohl die negativ geladenen Elektronen als auch die positiv geladenen Löcher können zum Stromfluss beitragen.

„Wenn in einer Solarzelle allerdings Elektron und Loch nicht als Strom abtransportiert werden, sondern sich wieder vereinen, dann ist alles wieder wie vorher – die Energie kann nicht genutzt werden“, erklärt Elias Assmann, der einen großen Teil der aufwändigen Computersimulationen an der TU Wien durchführte. „Der entscheidende Vorteil des neuen Materials ist: Hier herrscht auf mikroskopischen Größenordnungen ein starkes elektrisches Feld, das Elektronen und Löcher in entgegengesetzte Richtungen voneinander forttreibt.“ Das steigert die Effizienz der Solarzelle.

Aus zwei Isolatoren wird ein Metall
Eigentlich handelt es sich bei den Sauerstoff-Verbindungen, aus denen die neuen Materialien bestehen, um Isolatoren. Wenn man Schichten zweier geeignete Isolatoren aufeinanderpackt, entwickelt das Material an den Grenzflächen oben und unten erstaunlicherweise metallische Eigenschaften und leitet elektrischen Strom. „Das ist für uns von großer Bedeutung: Dadurch kann man oben und unten die elektrischen Ladungsträger sehr einfach ableiten und Strom fließen lassen“, sagt Karsten Held. Bei herkömmlichen Solarzellen aus Silizium muss man leitende Drähte aus Metall anbringen, um den Strom abzuführen – dadurch versperrt man aber einem Teil des Sonnenlichts den Weg ins Innere der Solarzelle.

Nicht alle Photonen werden von einer Solarzelle gleich effizient in elektrischen Strom umgewandelt. Für unterschiedliche Lichtfarben sind jeweils unterschiedliche Materialien besonders gut geeignet. „Bei den Oxid-Heterostrukturen kann man passende Eigenschaften erzielen, indem man geeignete chemische Elemente auswählt“, erklärt Prof. Peter Blaha vom Institut für Materialchemie. In den Simulationsrechnungen analysierte das Team Oxid-Schichten mit Lanthan und Vanadium, weil die dadurch aufgebauten Materialien besonders gut zur Strahlung der Sonne passen. „Es ist sogar möglich, verschiedene Schichttypen zu kombinieren, sodass unterschiedliche Lichtfarben optimal in unterschiedlichen Materialschichten in Strom verwandelt werden können“, sagt Elias Assmann.

Nächster Schritt: Praxistest

Unterstützt wurde das Team der TU Wien bei den Forschungen von Dr. Satoshi Okamoto vom Oak Ridge National Laboratory in Tennessee (USA) und von Prof. Giorgio Sangiovanni, einem ehemaligen Mitarbeiter der TU Wien, der nun an der Universität Würzburg forscht. In Würzburg sollen die neuen Solarzellen nun auch gebaut und getestet werden. „Die Produktion der Solarzellen aus Oxid-Schichten ist aufwändiger als bei herkömmlichen Solarzellen aus Silizium. Doch zumindest dort, wo besonders hohe Energie-Effizienz oder minimale Dicke gefragt ist, sollten die neuen Strukturen die bisherigen Silizium-Zellen ersetzen können.“, ist Karsten Held zuversichtlich.

Rückfragehinweise:

Prof. Karsten Held
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13710tarsten.held@tuwien.ac.at

Dipl.-Ing. Elias Assmann
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13759
elias.assmann@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.078701

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften