Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Werkstoff lässt Wasser und Öl abperlen

04.11.2014

Autolack, an dem kein Schmutz haftet, Fassaden, von denen Graffiti-Farbe abgleitet, und Schuhe, die auf matschigen Wegen sauber bleiben - der Werkstoff „Fluoropor“ könnte all dies möglich machen. An der neuen Klasse hochfluorierter superabweisender Polymere könnten sowohl Wasser als auch Öle abperlen.

Das BMBF fördert die Weiterentwicklung am KIT nun mit 2,85 Millionen Euro. Die Grundlagenforschung zielt unter anderem darauf, den neuen Werkstoff für universale Schutzbeschichtungen nutzbar zu machen


Der neuartige Werkstoff „Fluoropor“ stößt Wasser (links) und Öl (rechts) gleichermaßen ab, sodass sie nicht haften oder die Oberfläche benetzen können

(Bild: KIT/Rapp)

Von Lotuspflanzen, aber auch von Weißkohlblättern ist das Phänomen bekannt: Wassertropfen perlen einfach von ihnen ab. Dieser klassische Lotuseffekt wird bereits seit geraumer Zeit technisch nutzbar gemacht, indem man raue Oberflächen mit besonderen chemischen Eigenschaften herstellt.

„Allerdings funktioniert dieser Trick nicht für Öle – die Lotuspflanze ist wasser- nicht aber ölabweisend“, sagt Dr.-Ing. Bastian Rapp vom Institut für Mikrostrukturtechnik (IMT) des KIT.

„Ölabweisende Oberflächen müssen chemisch anders aufgebaut sein, hierfür sind Fluorpolymere notwendig“, erklärt der Wissenschaftler. Fluorpolymere sind Hochleistungskunststoffe, die sehr hitzebeständig und chemisch überaus stabil sind. Zu dieser Stoffklasse gehört das unter dem Handelsnamen Teflon bekannte Beschichtungsmaterial für Antihaft-Bratpfannen.

„Kombiniert man die chemischen Eigenschaften von Fluorpolymeren mit der Rauigkeit der Lotuspflanze, erreicht man Oberflächen, von denen sowohl Wasser als auch Öle abperlen“, sagt Rapp. Im Labor ist es bereits gelungen, solche superabweisende Oberflächen mit Lotus 2.0-Effekt herzustellen. Im Praxiseinsatz haben sie sich allerdings bislang noch als unzureichend stabil herausgestellt.

Vor allem die Empfindlichkeit gegen Abrieb erweist sich als ein großes Problem. Rapp arbeitet deshalb an der Entwicklung einer neuen Klasse fluorierter Polymere, von denen Wasser und Öl abperlen, und die im praktischen Einsatz wesentlich robuster sind. Diese als „Fluoropor“ bezeichneten Polymere sollen die Herstellung des Lotus 2.0-Effekts auf nahezu beliebigen Oberflächen ermöglichen.

Mit seinem Forschungsvorhaben war der junge KIT-Wissenschaftler nun beim NanoMatFutur-Nachwuchswettbewerb des Bundesministeriums für Bildung und Forschung (BMBF) erfolgreich. Sein Projekt „Fluoropor – chemisch inertes, mikro- bis nanoporöses ‚Teflon‘ mit einstellbarem Benetzungsverhalten“ erhält für die kommenden vier Jahre 2,85 Millionen Euro für den Aufbau einer wissenschaftlichen Nachwuchsgruppe. Das BMFB unterstützt mit dem NanoMatFutur-Wettbewerb hochqualifizierten wissenschaftlichen Nachwuchs in der Werkstoffforschung und Nanotechnologie. Gefördert wird anwendungsorientierte Grundlagenforschung mit hohem Potenzial für die industrielle Umsetzung.

Mit „Fluoropor“ können universale Schutzbeschichtungen gegen jede Form von Verschmutzung hergestellt werden, beispielsweise für Auto-Windschutzscheiben, an denen kein Wasser kondensiert und die im Winter nicht einfrieren. Der verarbeitenden Industrie könnten sehr feinporige Siebe zur Verfügung gestellt werden, die es dank ihrer Materialchemie und -struktur ermöglichen, Öl-Wasser-Gemische - die als Kühlschmierstoffe verwendet werden - wieder zu trennen.

An der Entwicklung des neuen Werkstoffs arbeiten in der von dem Maschinenbauingenieur Rapp geleiteten Nachwuchsgruppe unter anderem Chemieverfahrenstechniker sowie Fachleute für Organische Chemie, Materialchemie und Prozesstechnik zusammen. „Am KIT-Institut für Mikrostrukturtechnik und seiner Technologieplattform Karlsruhe Nano Micro Facility steht uns für unsere Forschung eine große Bandbreite an Analyse- und Strukturierungsmethoden zur Verfügung, zum Beispiel die Rasterkraft- und Rasterelektronenmikroskopie“, betont Rapp.

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Thematische Schwerpunkte der Forschung sind Energie, natürliche und gebaute Umwelt sowie Gesellschaft und Technik, von fundamentalen Fragen bis zur Anwendung. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern, darunter mehr als 6 000 in Wissenschaft und Lehre, sowie 24 500 Studierenden ist das KIT eine der größten Forschungs- und Lehreinrichtungen Europas. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Studie InLight: Einblicke in chemische Prozesse mit Licht
22.11.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Eigenschaften von Magnetmaterialien gezielt ändern
16.11.2016 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten