Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In «Nature Chemistry»: Schweizer Forscher stellen erstmals zweidimensionale Polymere her

13.02.2012
Für eine kleine Sensation in der synthetischen Chemie sorgen Wissenschaftler der ETH Zürich und der Empa. Erstmals ist es gelungen, regelmässig angeordnete zweidimensionale Polymere herzustellen, die eine Art «molekularer Teppich» im Nanometermassstab bilden.

Der ETH-Chemiker Hermann Staudinger postulierte schon 1920 die Existenz von Makromolekülen aus identischen Bausteinen, die kettenförmig aneinandergereiht sind. Er erntete dafür in Fachkreisen zunächst nur Hohn und Unverständnis.


Schematische Darstellung eines linearen kettenförmigen Polymers (blaue Kästchen) und eines zweidimensionalen Polymers, bei dem sich die Monomere flächig anordnen. (orange Dreiecke). Bild: Forschungsgruppe Schlüter / ETH Zürich

Doch Staudinger sollte Recht (und 1953 gar den Chemienobelpreis) bekommen: Bereits 1950 wurde weltweit pro Kopf ein Kilogramm Polymere – besser bekannt als Kunststoffe – produziert; heute sind es jährlich etwa 150 Millionen Tonnen. Eine gigantische Industrie, deren Produkte aus unserem Alltag nicht mehr wegzudenken sind. Einer Forschungsgruppe unter Leitung der ETH-Forscher A. Dieter Schlüter und Junji Sakamoto gelang nun ein entscheidender Durchbruch: Sie erzeugten erstmals zweidimensionale, also flächige Polymere.

Polymere entstehen, indem sich kleine Moleküle, so genannte Monomere, durch chemische Reaktionen kettenförmig zu hochmolekularen Stoffen verbinden. Die Frage war nun, ob Polymere ausschliesslich linear polymerisieren können. Zwar gilt Graphen – zweidimensionale Kohlenstoffschichten mit einem wabenförmigen Muster – als natürlicher Vertreter eines flächigen Polymers, es kann allerdings nicht kontrolliert hergestellt werden. Um eine Synthese-Chemie für zweidimensionale Polymere zu entwickeln, mussten die ETH-Chemiker zunächst oligofunktionale Monomere – Polymerbausteine mit mehreren «reaktiven» Stellen im Molekül – synthetisieren, die sich nicht linear oder gar räumlich (dreidimensional), sondern lediglich rein flächig miteinander verbinden. Derartige Polymere müssen drei oder mehr kovalente Bindungen zwischen den sich regelmässig wiederholenden Einheiten aufweisen. Die Wissenschaftler mussten daher zunächst herausfinden, welche Verbindungschemie und Umgebung sich für die Herstellung eines solchen «molekularen Teppichs» am besten eignen.

Mit Licht und speziellen Bausteinen zum «molekularen Teppich»

Sie entschieden sich für die Synthese in einem Einkristall, ein Kristall mit homogenem Schichtgitter. Dem Doktoranden Patrick Kissel gelang es schliesslich, speziell hergestellte Monomere in geschichtete hexagonale Einkristalle kristallisieren zu lassen. Dabei handelte es sich um photochemisch empfindliche Moleküle, für die eine solche Anordnung energetisch optimal ist. Bestrahlt mit Licht mit einer Wellenlänge von 470 Nanometer, polymerisierten die Monomere in sämtlichen Schichten – und nur in diesen. Um die einzelnen Schichten voneinander zu trennen, kochten die Forscher den Kristall in einem geeigneten Lösungsmittel. Ergebnis: Jede Schicht ergab ein zweidimensionales Polymer.

Dass es dem Team tatsächlich gelungen war, flächige Polymere mit regelmässiger Struktur herzustellen, zeigten letztlich die Untersuchungen am Transmissionselektronenmikroskop (TEM) von Empa-Forscher Rolf Erni und ETH-Forscherin Marta Rossell, die inzwischen ebenfalls am Elektronenmikroskopiezentrum der Empa arbeitet. «Die Herausforderung lag darin, dass diese zweidimensionalen Polymere extrem strahlungsempfindlich sind und es deshalb schwierig ist, die Struktur dieser Materialien während der Messung im TEM nicht zu zerstören», erklärt Erni. Mit Diffraktionsexperimenten bei minus 196 Grad Celsius, das heisst bei der Temperatur, bei der Stickstoff kondensiert, und hoch auflösenden Aufnahmen bei niedriger Elektronendosis gelang den Empa-Forschenden schliesslich der Nachweis, dass die vernetzten Moleküle in der Tat eine geordnete zweidimensionale Struktur aufweisen.

Mögliche Anwendung: ein molekulares Sieb

Das entwickelte Polymerisationsverfahren ist so schonend, dass alle funktionellen Gruppen des Monomers auch im Polymer an definierten Stellen erhalten bleiben. «Unsere synthetisch hergestellten Polymere sind zwar nicht leitfähig wie Graphen, dafür könnten wir sie aber beispielsweise zum Filtern kleinster Moleküle nutzen», sagt Sakamoto. In den regelmässig angeordneten Polymeren befinden sich nämlich kleine definierte Löcher mit einem Durchmesser im Subnanometerbereich. Winzige Hexagone in den Polymeren, gebildet durch Benzolringe mit drei Ester-Gruppen, können zudem durch ein einfaches hydrolytisches Verfahren entfernt werden. Dadurch würde ein «Sieb» mit geordneter Struktur entstehen, das sich zum selektiven Filtrieren bestimmter Moleküle eignet.

Bevor sich die Forschenden jedoch über konkrete Anwendungen Gedanken machen können, gilt es nun, die Materialeigenschaften der zweidimensionalen Polymere zu charakterisieren. Sie müssen zunächst einmal einen Weg finden, grössere Mengen an grösseren Flächen herzustellen. Die Kristalle haben derzeit nämlich eine Grösse von lediglich 50 Mikrometer. «Das sind auf molekularer Ebene jedoch bereits enorme Polymerisationsgrade», betont Sakamoto.

Literaturhinweis:
A two-dimensional polymer prepared by organic synthesis, Kissel P, Erni R, Schweizer WB, Rossell MD, King BT, Bauer T, Götzinger S, Schlüter AD & Sakamoto J, Nature Chemistry (2012), doi: 10.1038/nchem.1265

Sabine Voser | EMPA
Weitere Informationen:
http://www.empa.ch

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen
23.04.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics