Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In «Nature Chemistry»: Schweizer Forscher stellen erstmals zweidimensionale Polymere her

13.02.2012
Für eine kleine Sensation in der synthetischen Chemie sorgen Wissenschaftler der ETH Zürich und der Empa. Erstmals ist es gelungen, regelmässig angeordnete zweidimensionale Polymere herzustellen, die eine Art «molekularer Teppich» im Nanometermassstab bilden.

Der ETH-Chemiker Hermann Staudinger postulierte schon 1920 die Existenz von Makromolekülen aus identischen Bausteinen, die kettenförmig aneinandergereiht sind. Er erntete dafür in Fachkreisen zunächst nur Hohn und Unverständnis.


Schematische Darstellung eines linearen kettenförmigen Polymers (blaue Kästchen) und eines zweidimensionalen Polymers, bei dem sich die Monomere flächig anordnen. (orange Dreiecke). Bild: Forschungsgruppe Schlüter / ETH Zürich

Doch Staudinger sollte Recht (und 1953 gar den Chemienobelpreis) bekommen: Bereits 1950 wurde weltweit pro Kopf ein Kilogramm Polymere – besser bekannt als Kunststoffe – produziert; heute sind es jährlich etwa 150 Millionen Tonnen. Eine gigantische Industrie, deren Produkte aus unserem Alltag nicht mehr wegzudenken sind. Einer Forschungsgruppe unter Leitung der ETH-Forscher A. Dieter Schlüter und Junji Sakamoto gelang nun ein entscheidender Durchbruch: Sie erzeugten erstmals zweidimensionale, also flächige Polymere.

Polymere entstehen, indem sich kleine Moleküle, so genannte Monomere, durch chemische Reaktionen kettenförmig zu hochmolekularen Stoffen verbinden. Die Frage war nun, ob Polymere ausschliesslich linear polymerisieren können. Zwar gilt Graphen – zweidimensionale Kohlenstoffschichten mit einem wabenförmigen Muster – als natürlicher Vertreter eines flächigen Polymers, es kann allerdings nicht kontrolliert hergestellt werden. Um eine Synthese-Chemie für zweidimensionale Polymere zu entwickeln, mussten die ETH-Chemiker zunächst oligofunktionale Monomere – Polymerbausteine mit mehreren «reaktiven» Stellen im Molekül – synthetisieren, die sich nicht linear oder gar räumlich (dreidimensional), sondern lediglich rein flächig miteinander verbinden. Derartige Polymere müssen drei oder mehr kovalente Bindungen zwischen den sich regelmässig wiederholenden Einheiten aufweisen. Die Wissenschaftler mussten daher zunächst herausfinden, welche Verbindungschemie und Umgebung sich für die Herstellung eines solchen «molekularen Teppichs» am besten eignen.

Mit Licht und speziellen Bausteinen zum «molekularen Teppich»

Sie entschieden sich für die Synthese in einem Einkristall, ein Kristall mit homogenem Schichtgitter. Dem Doktoranden Patrick Kissel gelang es schliesslich, speziell hergestellte Monomere in geschichtete hexagonale Einkristalle kristallisieren zu lassen. Dabei handelte es sich um photochemisch empfindliche Moleküle, für die eine solche Anordnung energetisch optimal ist. Bestrahlt mit Licht mit einer Wellenlänge von 470 Nanometer, polymerisierten die Monomere in sämtlichen Schichten – und nur in diesen. Um die einzelnen Schichten voneinander zu trennen, kochten die Forscher den Kristall in einem geeigneten Lösungsmittel. Ergebnis: Jede Schicht ergab ein zweidimensionales Polymer.

Dass es dem Team tatsächlich gelungen war, flächige Polymere mit regelmässiger Struktur herzustellen, zeigten letztlich die Untersuchungen am Transmissionselektronenmikroskop (TEM) von Empa-Forscher Rolf Erni und ETH-Forscherin Marta Rossell, die inzwischen ebenfalls am Elektronenmikroskopiezentrum der Empa arbeitet. «Die Herausforderung lag darin, dass diese zweidimensionalen Polymere extrem strahlungsempfindlich sind und es deshalb schwierig ist, die Struktur dieser Materialien während der Messung im TEM nicht zu zerstören», erklärt Erni. Mit Diffraktionsexperimenten bei minus 196 Grad Celsius, das heisst bei der Temperatur, bei der Stickstoff kondensiert, und hoch auflösenden Aufnahmen bei niedriger Elektronendosis gelang den Empa-Forschenden schliesslich der Nachweis, dass die vernetzten Moleküle in der Tat eine geordnete zweidimensionale Struktur aufweisen.

Mögliche Anwendung: ein molekulares Sieb

Das entwickelte Polymerisationsverfahren ist so schonend, dass alle funktionellen Gruppen des Monomers auch im Polymer an definierten Stellen erhalten bleiben. «Unsere synthetisch hergestellten Polymere sind zwar nicht leitfähig wie Graphen, dafür könnten wir sie aber beispielsweise zum Filtern kleinster Moleküle nutzen», sagt Sakamoto. In den regelmässig angeordneten Polymeren befinden sich nämlich kleine definierte Löcher mit einem Durchmesser im Subnanometerbereich. Winzige Hexagone in den Polymeren, gebildet durch Benzolringe mit drei Ester-Gruppen, können zudem durch ein einfaches hydrolytisches Verfahren entfernt werden. Dadurch würde ein «Sieb» mit geordneter Struktur entstehen, das sich zum selektiven Filtrieren bestimmter Moleküle eignet.

Bevor sich die Forschenden jedoch über konkrete Anwendungen Gedanken machen können, gilt es nun, die Materialeigenschaften der zweidimensionalen Polymere zu charakterisieren. Sie müssen zunächst einmal einen Weg finden, grössere Mengen an grösseren Flächen herzustellen. Die Kristalle haben derzeit nämlich eine Grösse von lediglich 50 Mikrometer. «Das sind auf molekularer Ebene jedoch bereits enorme Polymerisationsgrade», betont Sakamoto.

Literaturhinweis:
A two-dimensional polymer prepared by organic synthesis, Kissel P, Erni R, Schweizer WB, Rossell MD, King BT, Bauer T, Götzinger S, Schlüter AD & Sakamoto J, Nature Chemistry (2012), doi: 10.1038/nchem.1265

Sabine Voser | EMPA
Weitere Informationen:
http://www.empa.ch

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Biegsame Touchscreens: Neues Herstellungsverfahren für transparente Elektronik verbessert
28.03.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie