Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanostrukturen für die Schmierung im Gelenkersatz

29.04.2011
Materialwissenschaftler der Universität Jena erforschen Proteinschichten in künstlichen Gelenken

Für ein Biomaterial im Körper ist entscheidend, dass es nicht abgestoßen wird und optimal funktioniert. Wichtig für die Akzeptanz ist dabei, wie sich körpereigene Proteine an Implantat-Oberflächen anlagern. Diese menschlichen Eiweiße schmieren darüber hinaus beispielsweise die natürlichen Knie- oder Hüftgelenke, indem sie auf dem Knorpel eine Proteinschicht bilden. Proteine werden aber auch in künstlichen Gelenken eingesetzt, um dort die Reibung und die dadurch entstehende Schädigung des Materials zu reduzieren.


Rasterkraftmikroskopisches Bild einer nanokristallinen Lamelle einer orientierten UHMWPE-Oberfläche. Foto: Thomas F. Keller/IMT/FSU Jena

Bisher war jedoch weitgehend unbekannt, wie man am besten solche Proteine auf künstliche Materialien aufbringt und wie deren Oberfläche dafür am besten beschaffen sein muss. Dr. Thomas F. Keller von der Friedrich-Schiller-Universität Jena hat diesen Prozess intensiv untersucht und gerade neue Erkenntnisse zur Anwendung des UHMWPE gewonnen. Das ultra-hochmolekulare Polyethylen (UHMWPE) dient als Verschleißpartner in den künstlichen Gelenken, die meist aus metallischen oder keramischen Komponenten bestehen. Der Wissenschaftler vom Lehrstuhl für Materialwissenschaft des Instituts für Materialwissenschaft und Werkstofftechnologie (IMT) hat jetzt zeigen können, dass sich Proteine, die selbst einige zehn Nanometer groß sind, bevorzugt an nanokristalline Lamellen des UHMWPE anlagern. Die Eigenschaft der Proteine, Netzwerke auszubilden, wird dadurch eingeschränkt, wie in der gerade erschienenen April-Ausgabe der internationalen Fachzeitschrift „ACS Nano“ zu lesen ist.

„Die Fähigkeit des UHMWPE, durch eine Nanostrukturierung Proteine gerichtet anzuordnen, kann für die Reibeigenschaften in neuen Gelenken wichtig sein“, sagt Dr. Keller. Denn Gelenke, wie das Knie oder die Hüfte, werden durch das eigene Körpergewicht oft einseitig belastet. „Und die Gelenke erzeugen während des Ganges eine zwar komplexe, aber im Wesentlichen unidirektionale Verschleißspur“, erläutert der Wissenschaftler.

Die neuen Erkenntnisse sollen am Lehrstuhl für Materialwissenschaft in Jena nun auch auf andere Implantatoberflächen mit Kontakt zur biologischen Umgebung, sogenannte „Biointerfaces“, übertragen werden, sagt der Lehrstuhlinhaber Prof. Dr. Klaus D. Jandt. „Durch molekulares Design auf der Nanoskala wollen wir weitere biologische Funktionen optimieren.“ Nicht nur den Verschleiß künstlicher Gelenke will er minimieren, Jandt denkt auch an ein optimiertes Einwachsverhalten von Implantaten. „In jedem Fall sollen die Entwicklungen letztendlich den Patienten zugute kommen“, betont der Jenaer Materialwissenschaftler.

Originalpublikation:
T. F. Keller, J. Schönfelder, J. Reichert, N. Tuccitto, A. Licciardello, G. M. L. Messina, G. Marletta, K. D. Jandt: How the Surface Nanostructure of Polyethylene Affects Protein Assembly and Orientation, ACS Nano 2011, 5 (4), 3120-3131. http://dx.doi.org/10.1021/nn200267c.
Kontakt:
Dr. Thomas F. Keller, Prof. Dr. Klaus D. Jandt
Institut für Materialwissenschaft und Werkstofftechnologie der Universität Jena
Löbdergraben 32, 07743 Jena
Tel.: 03641 / 947730
E-Mail: t.keller[at]uni-jena.de, k.jandt[at]uni-jena.de

Axel Burchardt | Uni Jena
Weitere Informationen:
http://www.uni-jena.de
http://dx.doi.org/10.1021/nn200267c

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

nachricht Gelatine statt Unterarm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung