Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanokomposite schützen High-Tech-Elektronik

03.07.2012
Ein Forschungsteam an der Universität Bayreuth hat eine äußerst wirksame und zugleich flexible Schutzschicht für hochempfindliche Bauteile entwickelt.

Elektronische Bauteile von High-Tech-Produkten, beispielsweise organische Leuchtdioden (OLEDs) oder Dünnschichttransistoren, können bereits durch geringste Mengen von Sauerstoff oder Wasserdampf geschädigt werden.


Die mit einem Rasterelektronenmikroskop entstandene Aufnahme zeigt einen Querschnitt durch die Beschichtung. In der an ein Buch erinnernden lamellaren Struktur wechseln sich Silikatschichten mit den Kunststoffschichten der Polymermatrix ab. 500 Nanometer (nm) entsprechen dabei 1 Zweitausendstel Millimeter. Die Grafik links zeigt schematisch vergrößert den dreistufigen Aufbau der Bausteine mit dem Schichtsilikat in der Mitte und den vernetzbaren Kunststoffketten an den äußeren Flächen.

Abbildung: Lehrstuhl für Anorganische Chemie I, Universität Bayreuth; mit Quellenangabe zur Veröffentlichung frei.

Die Elektronikindustrie ist daher dringend an Beschichtungen interessiert, die solche hochempfindlichen Bauteile luftdicht versiegeln. Glas hat sich dabei nur eingeschränkt bewährt. Es wird derzeit beispielsweise zum Schutz von OLEDs in hochwertigen Smartphones verwendet, doch die Displays werden dadurch starr und bruchanfällig.

Einem Forschungsteam um Prof. Dr. Josef Breu an der Universität Bayreuth (Lehrstuhl Anorganische Chemie I) ist es jetzt aber gelungen, eine äußerst wirksame Schutzschicht herzustellen, die durchsichtig ist und infolge ihrer Biegsamkeit eine lange Haltbarkeit verspricht. Im internationalen Fachjournal "Advanced Materials" stellen die Wissenschaftler ihre neue Entwicklung vor.

Riesige Silikatscheiben und kettenförmige Kunststoffe:
Bausteine einer neuartigen Schutzschicht

Die neuartige Schutzschicht besteht aus vielen übereinanderliegenden Ebenen. Jede Ebene setzt sich aus winzigen Bausteinen zusammen, die nur wenige Nanometer hoch sind und sich in ihrem dreistufigen Aufbau gleichen. Die Mitte bilden künstlich erzeugte scheibenförmige Schichtsilikate. Deren Oberfläche ist zehnmal größer als Schichtsilikate, die in der Natur – beispielsweise in vulkanischen Gesteinen – vorkommen. In den Bayreuther Laboratorien der Anorganischen Chemie ist es gelungen, diese ungewöhnlichen Schichtsilikate, die mindestens 5000 mal so breit wie hoch sind, zu synthetisieren.

Beidseitig sind an den Silikatscheiben kettenförmige Kunststoffmoleküle verankert, die für die Anwendung in einer luftdichten Schutzschicht optimiert wurden. Die gesamte, aus diesen Bausteinen gebildete Schutzschicht gehört damit zu der in den letzten Jahren intensiv erforschten Materialklasse der Nanokomposite. In diesem Fall ist das Nanokomposit aus vernetzten Kunststoffmolekülen und darin eingelagerten Schichtsilikaten aufgebaut, die als Füllstoff fungieren. Solche Nanokomposite werden derzeit in dem von der Deutschen Forschungsgemeinschaft geförderten Sonderforschungsbereich „Von partikulären Nanosystemen zur Mesotechnologie“ an der Universität Bayreuth untersucht.

Effizienz und Flexibilität: Vorteile des neuen Nanokomposits

Die innerhalb der Matrix übereinander liegenden Ebenen von Schichtsilikaten sind in der Lage, das Eindringen von Sauerstoff- oder Wassermolekülen weitgehend zu unterbinden. Die Silikatscheiben fungieren als Riegel, die diesen Molekülen den direkten Weg quer durch die Schutzschicht versperren. Infolgedessen müssen Sauerstoff- oder Wassermoleküle auf dem Weg durch die Schicht riesige Umwege zurücklegen und werden dabei ausgebremst. Dementsprechend verringert sich die Zahl der Moleküle, die pro Zeiteinheit die Schicht durchdringen können – was die Lebenserwartung des elektronischen Bauteils erheblich steigert.

Beim Schutz von High-Tech-Elektronik hat die Kombination aus einer Polymer-Matrix mit künstlichen Schichtsilikaten einen entscheidenden Vorteil, wenn man sie mit den etablierten Schutzschichten aus Glas vergleicht. Die gesamte Beschichtung ist flexibel und kann sich möglichen Verformungen anpassen, statt gleich zu zerbrechen. Diese Fähigkeit verringert die Wahrscheinlichkeit, dass Leuchtdioden, Transistoren oder andere Bauteile während des Transports beschädigt werden. Durch die neuen Schutzschichten ist das langfristige Ziel, biegsame Displays herstellen zu können, deutlich näher gerückt.
Prof. Dr. Josef Breu und seine Mitarbeiter haben die verwendeten Schichtsilikate auch mit alternativen Füllstoffen verglichen. Das Ergebnis: Eine derart ausgeprägte Flexibilität und Undurchlässigkeit der Schutzschicht lässt sich nur mit synthetischen, nicht aber mit den in der Natur vorkommenden Silikaten erzielen.

Ein kostengünstiges Herstellungsverfahren, zum Patent angemeldet

Für die Herstellung der neuen Nanokomposite haben die Bayreuther Wissenschaftler ein kostengünstiges Verfahren entwickelt, das im Industriemaßstab realisiert werden kann. Die dreistufigen, aus Silikaten und Kunststoffmolekülen bestehenden Bausteine lassen sich dabei großflächig auf die elektronischen Bauteile aufstreichen. Aufgrund ihrer Scheibenstruktur ordnen sich die Schichtsilikate automatisch parallel zueinander aus. Durch eine nachfolgende Behandlung mit ultraviolettem Licht erhält die hochgeordnete Matrix ihre Festigkeit. Wegen der hochinteressanten industriellen Anwendungspotenziale, insbesondere bei der nachhaltigen Sicherung von High-Tech-Produkten, ist diese Erfindung mittlerweile zum Patent angemeldet worden.

Veröffentlichung:

Michael W. Möller, Daniel A. Kunz, Thomas Lunkenbein, Stefan Sommer,
Arno Nennemann, Josef Breu,
UV-Cured, Flexible, and Transparent Nanocomposite Coating
with Remarkable Oxygen Barrier,
in: Advanced Materials (2012), Volume 24, Issue 16, pp. 2142-2147
DOI: 10.1002/adma.201104781
Ansprechpartner:

Prof. Dr. Josef Breu
Lehrstuhl für Anorganische Chemie I
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0) 921 55-2530
E-Mail: josef.breu@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.sfb840.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften