Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanokomposite schützen High-Tech-Elektronik

03.07.2012
Ein Forschungsteam an der Universität Bayreuth hat eine äußerst wirksame und zugleich flexible Schutzschicht für hochempfindliche Bauteile entwickelt.

Elektronische Bauteile von High-Tech-Produkten, beispielsweise organische Leuchtdioden (OLEDs) oder Dünnschichttransistoren, können bereits durch geringste Mengen von Sauerstoff oder Wasserdampf geschädigt werden.


Die mit einem Rasterelektronenmikroskop entstandene Aufnahme zeigt einen Querschnitt durch die Beschichtung. In der an ein Buch erinnernden lamellaren Struktur wechseln sich Silikatschichten mit den Kunststoffschichten der Polymermatrix ab. 500 Nanometer (nm) entsprechen dabei 1 Zweitausendstel Millimeter. Die Grafik links zeigt schematisch vergrößert den dreistufigen Aufbau der Bausteine mit dem Schichtsilikat in der Mitte und den vernetzbaren Kunststoffketten an den äußeren Flächen.

Abbildung: Lehrstuhl für Anorganische Chemie I, Universität Bayreuth; mit Quellenangabe zur Veröffentlichung frei.

Die Elektronikindustrie ist daher dringend an Beschichtungen interessiert, die solche hochempfindlichen Bauteile luftdicht versiegeln. Glas hat sich dabei nur eingeschränkt bewährt. Es wird derzeit beispielsweise zum Schutz von OLEDs in hochwertigen Smartphones verwendet, doch die Displays werden dadurch starr und bruchanfällig.

Einem Forschungsteam um Prof. Dr. Josef Breu an der Universität Bayreuth (Lehrstuhl Anorganische Chemie I) ist es jetzt aber gelungen, eine äußerst wirksame Schutzschicht herzustellen, die durchsichtig ist und infolge ihrer Biegsamkeit eine lange Haltbarkeit verspricht. Im internationalen Fachjournal "Advanced Materials" stellen die Wissenschaftler ihre neue Entwicklung vor.

Riesige Silikatscheiben und kettenförmige Kunststoffe:
Bausteine einer neuartigen Schutzschicht

Die neuartige Schutzschicht besteht aus vielen übereinanderliegenden Ebenen. Jede Ebene setzt sich aus winzigen Bausteinen zusammen, die nur wenige Nanometer hoch sind und sich in ihrem dreistufigen Aufbau gleichen. Die Mitte bilden künstlich erzeugte scheibenförmige Schichtsilikate. Deren Oberfläche ist zehnmal größer als Schichtsilikate, die in der Natur – beispielsweise in vulkanischen Gesteinen – vorkommen. In den Bayreuther Laboratorien der Anorganischen Chemie ist es gelungen, diese ungewöhnlichen Schichtsilikate, die mindestens 5000 mal so breit wie hoch sind, zu synthetisieren.

Beidseitig sind an den Silikatscheiben kettenförmige Kunststoffmoleküle verankert, die für die Anwendung in einer luftdichten Schutzschicht optimiert wurden. Die gesamte, aus diesen Bausteinen gebildete Schutzschicht gehört damit zu der in den letzten Jahren intensiv erforschten Materialklasse der Nanokomposite. In diesem Fall ist das Nanokomposit aus vernetzten Kunststoffmolekülen und darin eingelagerten Schichtsilikaten aufgebaut, die als Füllstoff fungieren. Solche Nanokomposite werden derzeit in dem von der Deutschen Forschungsgemeinschaft geförderten Sonderforschungsbereich „Von partikulären Nanosystemen zur Mesotechnologie“ an der Universität Bayreuth untersucht.

Effizienz und Flexibilität: Vorteile des neuen Nanokomposits

Die innerhalb der Matrix übereinander liegenden Ebenen von Schichtsilikaten sind in der Lage, das Eindringen von Sauerstoff- oder Wassermolekülen weitgehend zu unterbinden. Die Silikatscheiben fungieren als Riegel, die diesen Molekülen den direkten Weg quer durch die Schutzschicht versperren. Infolgedessen müssen Sauerstoff- oder Wassermoleküle auf dem Weg durch die Schicht riesige Umwege zurücklegen und werden dabei ausgebremst. Dementsprechend verringert sich die Zahl der Moleküle, die pro Zeiteinheit die Schicht durchdringen können – was die Lebenserwartung des elektronischen Bauteils erheblich steigert.

Beim Schutz von High-Tech-Elektronik hat die Kombination aus einer Polymer-Matrix mit künstlichen Schichtsilikaten einen entscheidenden Vorteil, wenn man sie mit den etablierten Schutzschichten aus Glas vergleicht. Die gesamte Beschichtung ist flexibel und kann sich möglichen Verformungen anpassen, statt gleich zu zerbrechen. Diese Fähigkeit verringert die Wahrscheinlichkeit, dass Leuchtdioden, Transistoren oder andere Bauteile während des Transports beschädigt werden. Durch die neuen Schutzschichten ist das langfristige Ziel, biegsame Displays herstellen zu können, deutlich näher gerückt.
Prof. Dr. Josef Breu und seine Mitarbeiter haben die verwendeten Schichtsilikate auch mit alternativen Füllstoffen verglichen. Das Ergebnis: Eine derart ausgeprägte Flexibilität und Undurchlässigkeit der Schutzschicht lässt sich nur mit synthetischen, nicht aber mit den in der Natur vorkommenden Silikaten erzielen.

Ein kostengünstiges Herstellungsverfahren, zum Patent angemeldet

Für die Herstellung der neuen Nanokomposite haben die Bayreuther Wissenschaftler ein kostengünstiges Verfahren entwickelt, das im Industriemaßstab realisiert werden kann. Die dreistufigen, aus Silikaten und Kunststoffmolekülen bestehenden Bausteine lassen sich dabei großflächig auf die elektronischen Bauteile aufstreichen. Aufgrund ihrer Scheibenstruktur ordnen sich die Schichtsilikate automatisch parallel zueinander aus. Durch eine nachfolgende Behandlung mit ultraviolettem Licht erhält die hochgeordnete Matrix ihre Festigkeit. Wegen der hochinteressanten industriellen Anwendungspotenziale, insbesondere bei der nachhaltigen Sicherung von High-Tech-Produkten, ist diese Erfindung mittlerweile zum Patent angemeldet worden.

Veröffentlichung:

Michael W. Möller, Daniel A. Kunz, Thomas Lunkenbein, Stefan Sommer,
Arno Nennemann, Josef Breu,
UV-Cured, Flexible, and Transparent Nanocomposite Coating
with Remarkable Oxygen Barrier,
in: Advanced Materials (2012), Volume 24, Issue 16, pp. 2142-2147
DOI: 10.1002/adma.201104781
Ansprechpartner:

Prof. Dr. Josef Breu
Lehrstuhl für Anorganische Chemie I
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0) 921 55-2530
E-Mail: josef.breu@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.sfb840.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten