Nano – Winzige Teile mit großer Wirkung – Untersuchungen zur Sicherheit von Nanoprodukten für Mensch und Umwelt

Dazu gehören z. B. Textilien, von denen Schmutz einfach abperlt oder die antibakteriell wirken. Doch wie bei jeder neuen Technologie muss auch diese sicher in der Anwendung sein. Hersteller und Anwender solcher High-Tech-Produkte sind daher gleichermaßen daran interessiert, dass die Nano-Partikel für Mensch und Umwelt unschädlich sind und das über den gesamten Lebenszyklus.

Im neuen Wissenschaftsbereich „Nanotoxikologie“ geht es deshalb im Moment in erster Linie darum, Testmethoden zu entwickeln, mit denen sich die Interaktion von Nano-Partikeln mit Mensch und Umwelt untersuchen und bewerten lassen.

Einer der Vorreiter für die Sicherheit von nano-funktionalisierten Textilien ist dabei das internationale Textilforschungszentrum Hohenstein Institute in Bönnigheim. Dort arbeiten Biologen, Mediziner und Chemiker in mehreren Forschungsprojekten im Arbeitsgebiet Nano-Toxikologie zusammen, um wichtige wissenschaftliche Grundlagen zur Produktsicherheit und Nachhaltigkeit von Nano-Produkten zu erforschen. Hierbei kommen zum einen standardisierte, aus anderen toxikologischen Fachgebieten wie der Umwelt-Toxikologie bekannte, sogenannte OECD-Prüfmethoden zum Einsatz.

Das Team von Dr. Timo Hammer, wissenschaftlichem Leiter des Fachbereichs Arbeit, Umwelt und Medizin ergänzt diese durch aussagekräfftige Organmodelle: „ Unsere Organmodelle bilden alle möglichen Eintrittspforten von Nano-Teilchen in den menschlichen Körper ab – also Atemtrakt, Magen-Darm-Trakt und die Haut.“ Um zu untersuchen, ob Nano-Partikel aus der Atemluft aufgenommen werden können, belasten die Hohenstein Wissenschaftler zum Beispiel menschliche Zellen des Atemtraktes mit speziell markierten Nano-Partikeln. Anschließend beobachten sie unter dem Mikroskop, ob die winzigen Teilchen von den Flimmerhärchen der Zellen abtransportiert und damit die Aufnahme in den Körper verhindert werden . Die Wissenschaftler interessiert aber auch, wie die Zellen generell auf die Nano-Partikel reagieren – sprich, ob z. B. die Zellteilung und damit ihre Regenerationsfähigkeit beeinflusst wird.

Auch mögliche Umweltauswirkungen der Nano-Teilchen werden in Hohenstein untersucht. Auch hier arbeiten Dr. Hammer und seine Kollegen mit Modellen, anhand derer sich untersuchen lässt, ob freie Partikel, ausgerüstete Textilien oder Abwasser einer Fabrik das natürliche Ökosystem schädigen: „Das A und O sind dabei praxisnahe Versuchsaufbauten und Modellorganismen wie Wasserflöhe oder Zebrafische, um eine verlässliche Risikoabschätzung vornehmen zu können.“.

Die aktuellen Ergebnisse der Nanotoxikologie werden am 14.12.2011 beim Hohenstein Nanoforum mit Nano-Experten aus Wissenschaft und Industrie vorgestellt und diskutiert.Mehr Informationen und die Möglichkeit zur Anmeldung gibt es unter www.hohenstein.de /nanoforum.

Media Contact

Rose-Marie Riedl Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer