Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Molekülen und Licht an Zellen zupfen

19.12.2016

Kieler Forschungsgruppen finden neue Methode zur Zellstimulation

Jeder Mensch besteht aus etwa 100 Billionen Zellen – aneinandergereiht würden sie 60-mal um den Erdball reichen. Die meisten dieser Zellen entstehen durch Teilung und Differenzierung einer einzigen Eizelle.


Von unten eingestrahltes grünes Licht bringt Signalmoleküle (RGD) zum Vibrieren. Dieser mechanische Reiz stimuliert Zellen so, dass sie an der Oberfläche haften.

Rainer Herges

Zur Orientierung erkunden sie laufend ihre Umgebung und kommunizieren mit ihren Nachbarn, indem sie an anderen Zellen oder Oberflächen haften. Zwei Arbeitsgruppen aus der Chemie und der Biophysik der Christian-Albrechts-Universität zu Kiel (CAU) haben eine neue Methode entdeckt, um Zellen zu stimulieren und damit ihre Haftung zu verstärken.

Ihre Ergebnisse erschienen jetzt in der renommierten Fachzeitschrift Angewandte Chemie.

Zellen werden permanent von Bakterien attackiert, die versuchen, in sie einzudringen. Nützliche Bakterien dagegen leben friedlich auf der menschlichen Haut oder helfen bei der Verdauung. Um Freund und Feind voneinander zu unterscheiden oder um sich selbst entsprechend ihrer Nachbarzellen zu differenzieren, müssen Zellen ständig kommunizieren und ihre Umgebung sondieren. Dafür suchen sie den direkten Kontakt zu anderen Zellen oder zu ihrer Umgebung.

„Schwimmen Zellen einzeln in einer Lösung und treffen dann auf eine Oberfläche, sondieren sie zunächst, ob es sich um einen geeigneten Ort handelt, um sich niederzulassen. Ist das der Fall, strecken sie Proteinfühler aus, um sich festzuhalten. Andere Zellen folgen und es entsteht ein Zellgewebe“, erklärt dazu Rainer Herges, Professor am Institut für Organische Chemie.

Werden Zellen stimuliert, haften sie schneller

Dass Zellen auf bestimmte Oberflächenstrukturen und deren chemische Zusammensetzung reagieren, ist in der Forschung schon länger bekannt. Auch gab es bereits Hinweise darauf, dass nicht nur statische Reize, sondern dynamische Vorgänge, also Bewegungen und mechanische Kräfte, ebenfalls attraktiv auf Zellen wirken. Wird zum Beispiel mit feinen Nadeln an Zellen gezogen, regt sie das an, ihre Haftung zu verstärken.

„Dies ist jedoch keine sehr subtile, kontrollierte Methode, denn dadurch können sehr viele verschiedene zelluläre Prozesse beeinflusst werden“, berichtet Christine Selhuber-Unkel, Professorin für Biokompatible Nanomaterialien am Institut für Materialwissenschaft der Universität Kiel.

Sehr viel ausgeklügelter ist der Weg, den Selhuber-Unkel und Herges jetzt gefunden haben, um Zellen zu stimulieren. Sie verknüpfen chemische Erkennungsstrukturen (sogenannte RGDs), die von den Zellen erkannt werden, mit Oberflächen. Diese Signalmoleküle stehen aber nicht statisch auf den Oberflächen, sondern können mit Licht bewegt werden: In der Leine, die die RGDs mit den Oberflächen verbindet, sind winzige, molekulare Schalter eingebaut. Bei der Bestrahlung mit grünem Licht biegen sich diese Moleküle etwa 1000-mal pro Sekunde hin und her.

„Diese Vibration überträgt sich auf die RGDs, die wiederum an den Zellen ‚zupfen‘. Die Zellen scheinen diese Art von Stimulation zu spüren: Sie haften schneller und fester an der Oberfläche“, erklärt Selhuber-Unkel. Gemessen wurde diese Haftkraft mithilfe eines Rasterkraftmikroskops. Dass die Zellen auf diesen Reiz reagieren, zeigt auch ihre vermehrte Herstellung von Haftproteinen.

Licht als „Nanoskalpell“ denkbar

Aus der Entdeckung der Kieler Forscherinnen und Forscher ergeben sich zahlreiche potentielle Anwendungen. Die molekularen Vibratoren lassen sich direkt in Zellmembranen einbauen – Zellen wären darüber mit Licht steuerbar. „Langfristig ist auch der Einsatz von Licht als eine Art ‚Nanoskalpell‘ denkbar, durch das extrem präzise mikroskopische Eingriffe ermöglicht werden können“, überlegt Herges weiter.

Im Sonderforschungsbereich (SFB) 677 „Funktion durch Schalten“ wird schon lange geforscht, wie Zellen über molekulare Schalter mit Licht indirekt stimuliert werden können. „Die Stimulation über Licht hat eine Reihe von Vorteilen. Zum einen kann es sehr schnell und nach Belieben ausgeschaltet werden“, erklärt SFB-Leiter Herges.

„Vor allem aber kann man Zellen mit gebündeltem Licht auf etwa 300 Nanometer punktgenau bestrahlen. So können wir herausfinden, welche Bereiche auf der Zelle für die Haftung verantwortlich sind und damit die Mechanismen der Zellhaftung aufklären.“ Im Rahmen des SFB 677 kam die interdisziplinäre Zusammenarbeit auch zustande: Michelle Holz und Grace Suana aus der Arbeitsgruppe um Rainer Herges aus der Organischen Chemie synthetisierten die Schaltmoleküle und Oberflächen. Laith F. Kadem aus der Arbeitsgruppe von Christine Selhuber-Unkel führte die Zellexperimente durch.

Das Forschungsprojekt wurde finanziert durch den SFB 677 „Funktion durch Schalten“, in dem 100 Wissenschaftlerinnen und Wissenschaftler aus Chemie, Physik, Materialwissenschaften, Pharmazie und Medizin fächerübergreifend daran arbeiten, schaltbare molekulare Maschinen zu entwickeln. Außerdem wurde es unterstützt durch ein ERC-Starting-Grant, über das der Europäische Forschungsrat Christine Selhuber-Unkel seit 2013 mit 1,5 Millionen Euro fördert.

Originalpublikation:
Laith F. Kadem, K. Grace Suana, Michelle Holz, Wei Wang, Hannes Westerhaus, Rainer Herges, and Christine Selhuber-Unkel. High Frequency Mechanostimulation of Cell Adhesion. Angewandte Chemie, 30.11.2016
DOI: 10.1002/anie.201609483 http://dx.doi.org/10.1002/anie.201609483

Weitere Informationen:

http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2016-426-zellhaftung

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht CAU-Forschungsteam entwickelt neues Verbundmaterial aus Kohlenstoffnanoröhren
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Material mit vielversprechenden Eigenschaften
22.11.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften