Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Mineral-Kunststoff“ mit hohem Potenzial für die Zukunft

25.07.2016

Völlig neue Kunststoff-Klasse ist von der Natur inspiriert und leicht abbaubar

Herkömmliche Kunststoffe werden auf Erdölbasis hergestellt und stellen für die Umwelt ein Problem dar, da sie nicht abbaubar sind. Die Arbeitsgruppe um den Konstanzer Chemiker Prof. Dr. Helmut Cölfen hat nun einen völlig neuartigen „Mineral-Kunststoff“ hergestellt, der sich strukturell an Biomaterialien anlehnt.


Synthese eines „Mineral-Kunststoffes“ (hier: eines supramolekularen ACC/PAA-Hydrogels) durch Mischen von Calciumchlorid, Natriumcarbonat und Polyacrylsäure in Wasser.

Der Kunststoff ist ein so genanntes Hydrogel, das bei Raumtemperatur aus Kalk (amorphem Calciumcarbonat) und Polyacrylsäure in Wasser hergestellt werden kann. Er kann direkt recycelt oder auch umgeformt werden und ist im gelartigen Zustand „selbstheilend“.

In getrocknetem Zustand hat das Hydrogel die Konsistenz einer Krabbenschale und ist biegsam. Das nicht-toxische plastische Material könnte in Zukunft klassische Kunststoffe teilweise ersetzen und dadurch zur Lösung von Umweltproblemen beitragen. Veröffentlicht wurde die Arbeit soeben in der Zeitschrift Angewandte Chemie (DOI: 10.1002/anie.201606536).

Konventionelle Kunststoffe sind in der Regel biologisch nicht abbaubar, und auch der Prozess des Recyclings erfordert wieder Energie. Die Herstellung des Mineral-Kunststoffes durch die Konstanzer Arbeitsgruppe entspricht dem Leitbild der „Grünen Chemie“ und wurde inspiriert durch Mineralisationsprozesse in der Natur, die auf Basis von Calciumcarbonat ablaufen.

Das Hydrogel, das Kunststoffe ersetzen könnte, besteht aus Nano-Partikeln von Calciumcarbonat, die durch Polyacrylsäure vernetzt werden. Das ohne Energiezufuhr bei Raumtemperatur entstehende Hydrogel ist formbar und selbstheilend, da sich etwa Risse durch die Zugabe eines Tropfen Wassers von selbst verschließen.

Auch das Zusammenfügen zweier (Bau-)Teile ist auf dieselbe Weise möglich. Die Eigenschaft, bei Erhitzen die Farbe zu ändern, ermöglicht zudem einen Einsatz des Gels als Temperatursensor. Dadurch, dass das Material durch Wasserzugabe leicht und ohne Energieaufwand umgeformt werden kann, ist das Recycling problemlos. Durch Zugabe einer schwachen Säure, etwa von Essig- oder Zitronensäure, löst es sich sprudelnd durch Freisetzung von Kohlendioxid auf. Die zurückbleibende Polyacrylsäure ist ungiftig.

„Das Verfahren der Herstellung des Hydrogels ist unmittelbar für die Industrie adaptierbar, zumal die Ausgangsmaterialien kostengünstig großtechnisch hergestellt werden“, erläutert Helmut Cölfen. Nach Trocknung erhält man ein Material wie Plastik, das nicht leicht zerbricht und biegsam ist.

Dadurch ist es als Ersatz für herkömmliches Plastikmaterial für Anwendungen in Trockenheit geeignet, etwa für Elektonikbauteile. Als Weiterentwicklung wäre an Überzugsmaterialien zu denken, die dann aber das Recycling möglichst nicht beeinflussen sollten. Die besondere Quellfähigkeit und gleichzeitige Härte nach Trocknung macht das Material für Bauanwendungen interessant, um Risse aufzufüllen.

Im Vergleich zu Biomineralien ist das Hydrogel formbar, während etwa Knochen oder Zähne hart sind, sobald das Biomineral fertig ausgebildet wurde. Nicht nur im Hinblick auf diese in der Natur ablaufenden Prozesse ist es für die Arbeitsgruppe um Helmut Cölfen an der Universität Konstanz daher interessant, wie die Eigenschaften solcher Gele systematisch verändert und damit noch weitere „Mineral-Kunststoffe“ für spezielle Anwendungen hergestellt werden können.

Künftige Forschungsvorhaben werden die neue Substanzklasse auch daraufhin unter die Lupe nehmen, welche medizinischen Anwendungen denkbar sind. Unter anderem sollen weitere Mineralien als Ausgangsstoff getestet werden, und es ist daran gedacht, Polyasparaginsäure als Vernetzungsmittel einzusetzen. Diese ist vollständig biologisch abbaubar.

Originalpublikation:
„Hydrogele aus amorphem Calciumcarbonat und Polyacrylsäure: Bioinspirierte Materialien für ‚Mineral-Kunststoffe‘“. Shengtong Sun, Li-Bo Mao, Zhouyue Lei, Shu-Hong Yu und Helmut Cölfen. Angewandte Chemie (DOI: 10.1002/anie.201606536).

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 88-3603
E-Mail: kum@uni-konstanz.de

Julia Wandt | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-konstanz.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften