Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Matrix für Gewebe

13.12.2010
Dreidimensionale Gerüste, auf denen Zellen sich ansiedeln und zu Geweben oder Organen heranwachsen können, sind in der regenerativen Medizin begehrt.

Materialwissenschaftler der Universität Würzburg haben dafür erfolgreich neue Fasern mit ganz besonderen Eigenschaften entwickelt.

Die Anforderungen an sie sind hoch: Im menschlichen Körper eingesetzt, müssen sie rückstandslos abbaubar sein – und das nicht zu schnell, aber auch nicht zu langsam. Nur ganz bestimmte Zellen sollen sich auf ihnen ansiedeln, untereinander verbinden und zu komplexen Strukturen heranwachsen. Andere Substanzen hingegen, beispielsweise Proteine und Zellen aus dem Blut, sollen ihnen fern bleiben.

Die Rede ist von extrem dünnen Polymerfäden, die zu Netzen oder dreidimensionalen Strukturen verwoben werden können. Professor Jürgen Groll erforscht solche Materialien, die in der Medizin zum Einsatz kommen sollen. Seit August dieses Jahres leitet er den Lehrstuhl für Funktionswerkstoffe in der Medizin und der Zahnheilkunde der Universität Würzburg. Jetzt hat er eine vielversprechende Neuentwicklung der Öffentlichkeit präsentiert. Die renommierte Fachzeitschrift Nature Materials berichtet darüber in ihrer aktuellen Ausgabe.

Extrem dünne Fäden wachsen im elektrischen Feld

„Es ist uns gelungen, eine Technik zu entwickeln, die solche Fasern in einem einzigen Arbeitsschritt herstellt“, sagt Groll. Ultradünne Polymerfasern zu produzieren: Das war bisher schon möglich. „Electrospinning“ heißt die dahinter steckende Technik. Das Prinzip: An eine Flüssigkeit wird ein elektrisches Feld angelegt, das dünne „Jets“ erzeugt. Die Fasern, die dabei entstehen, sind äußerst dünn – bis zu zehn Nanometern, also dem Hunderttausendstel eines Millimeters.

Groll und seine Mitarbeiter haben diese Technik jetzt einen deutlichen Schritt voran gebracht. Sie haben ein besonderes Makromolekül entwickelt. Gibt man dieses Molekül in die Flüssigkeit, aus der die Fasern hergestellt werden, verändert sich deren Oberfläche radikal. „Dieses Molekül verwandelt die an und für sich wasserabstoßenden Fasern in ‚hydophile‘, also wasseranziehende Fasern“, erklärt Groll. Damit unterdrückt es die Anlagerung unerwünschter Proteine an der Faseroberfläche.

Dass sich Proteine unkontrolliert an Polymerfäden anlagern, ist in der Medizin ein gefürchteter Effekt. Er tritt normalerweise sehr schnell auf, wenn Materialien in den Körper eingesetzt wird. „Auf den hydrophoben Oberflächen werden die Proteine schnell denaturiert“, sagt Groll. Dadurch besteht die Gefahr, dass das Immunsystem aktiviert wird und die Wundheilung gestört – alles unerwünschte Nebenwirkungen. „Deshalb ist es äußerst wichtig, die Anlagerung solcher Proteine zu verhindern“, so der Polymerchemiker.

Baugerüst für körpereigene Zellen

Andere Anheftungen sind hingegen mehr als erwünscht: Körpereigene Zellen sollen sich an den Faserstrukturen anlagern, untereinander verbinden und zu einer kompakten Struktur heranwachsen. Auf diese Weise können Mediziner beispielsweise dem Körper dabei helfen, großflächige Verletzungen schneller wieder zu schließen. Im Labor arbeiten Wissenschaftler daran, mit Hilfe dieser Fasern neue Gewebe, möglicherweise sogar neue Organe zu produzieren. Dazu „basteln“ sie mit den Polymerfäden dreidimensionale Gerüste in der benötigten Form, auf denen sich anschließend die gewünschten Zellen ansiedeln – beispielsweise Leberzellen, wenn es darum geht, eine neue Leber herzustellen, oder Knorpelzellen, die Ersatz für zerstörte Gelenkoberflächen schaffen sollen.

Der Vorteil solcher Implantate liegt auf der Hand: Weil sich das neue Organ aus Zellen des jeweiligen Patienten entwickelt hat, kommt es nach der Implantation zu keiner Abstoßungsreaktion. Auf eine medikamentöse Therapie, die heutzutage nach Fremdtransplantationen zwingend erforderlich ist, kann deshalb verzichtet werden. Und die Fasern werden nach wenigen Monaten rückstandslos abgebaut.

Neue Organe wachsen im Labor

„Je nachdem, welche Zellen sich an den Fasern anlagern sollen, geben wir ihnen die entsprechenden bioaktive Peptide auf der Oberfläche mit“, sagt Groll. Diese sorgen dafür, dass genau die Zellen angelockt werden, die im jeweiligen Fall benötigt werden.

Mit der von Groll und seinen Mitarbeitern entwickelten Technik lassen sich jetzt deutlich schneller als bisher Fasern und Faserstrukturen herstellen und mit den unterschiedlichsten Eigenschaften versehen. Groll ist überzeugt davon, dass es diese Technik schon in naher Zukunft möglich macht, im Labor Strukturen zu konstruieren, auf denen komplexe Gewebe wachsen können.

“Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation”, Dirk Grafahrend, Karl-Heinz Heffels, Meike V. Beer, Peter Gasteier, Martin Möller, Gabriele Boehm, Paul D. Dalton and Jürgen Groll. Nature Materials, DOI: 10.1038/NMAT2904

Kontakt
Professor Jürgen Groll,
T: (0931) 201 73610,
E-Mail: juergen.groll@fmz.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Warum Teige an Oberflächen kleben
14.12.2017 | Karlsruher Institut für Technologie

nachricht Neue Beschichtung bei Industrieanlagen soll Emissionen senken
12.12.2017 | Technische Universität Kaiserslautern

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Protein Structure Could Unlock New Treatments for Cystic Fibrosis

14.12.2017 | Life Sciences

Cardiolinc™: an NPO to personalize treatment for cardiovascular disease patients

14.12.2017 | Life Sciences

ASU scientists develop new, rapid pipeline for antimicrobials

14.12.2017 | Health and Medicine