Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Matrix für Gewebe

13.12.2010
Dreidimensionale Gerüste, auf denen Zellen sich ansiedeln und zu Geweben oder Organen heranwachsen können, sind in der regenerativen Medizin begehrt.

Materialwissenschaftler der Universität Würzburg haben dafür erfolgreich neue Fasern mit ganz besonderen Eigenschaften entwickelt.

Die Anforderungen an sie sind hoch: Im menschlichen Körper eingesetzt, müssen sie rückstandslos abbaubar sein – und das nicht zu schnell, aber auch nicht zu langsam. Nur ganz bestimmte Zellen sollen sich auf ihnen ansiedeln, untereinander verbinden und zu komplexen Strukturen heranwachsen. Andere Substanzen hingegen, beispielsweise Proteine und Zellen aus dem Blut, sollen ihnen fern bleiben.

Die Rede ist von extrem dünnen Polymerfäden, die zu Netzen oder dreidimensionalen Strukturen verwoben werden können. Professor Jürgen Groll erforscht solche Materialien, die in der Medizin zum Einsatz kommen sollen. Seit August dieses Jahres leitet er den Lehrstuhl für Funktionswerkstoffe in der Medizin und der Zahnheilkunde der Universität Würzburg. Jetzt hat er eine vielversprechende Neuentwicklung der Öffentlichkeit präsentiert. Die renommierte Fachzeitschrift Nature Materials berichtet darüber in ihrer aktuellen Ausgabe.

Extrem dünne Fäden wachsen im elektrischen Feld

„Es ist uns gelungen, eine Technik zu entwickeln, die solche Fasern in einem einzigen Arbeitsschritt herstellt“, sagt Groll. Ultradünne Polymerfasern zu produzieren: Das war bisher schon möglich. „Electrospinning“ heißt die dahinter steckende Technik. Das Prinzip: An eine Flüssigkeit wird ein elektrisches Feld angelegt, das dünne „Jets“ erzeugt. Die Fasern, die dabei entstehen, sind äußerst dünn – bis zu zehn Nanometern, also dem Hunderttausendstel eines Millimeters.

Groll und seine Mitarbeiter haben diese Technik jetzt einen deutlichen Schritt voran gebracht. Sie haben ein besonderes Makromolekül entwickelt. Gibt man dieses Molekül in die Flüssigkeit, aus der die Fasern hergestellt werden, verändert sich deren Oberfläche radikal. „Dieses Molekül verwandelt die an und für sich wasserabstoßenden Fasern in ‚hydophile‘, also wasseranziehende Fasern“, erklärt Groll. Damit unterdrückt es die Anlagerung unerwünschter Proteine an der Faseroberfläche.

Dass sich Proteine unkontrolliert an Polymerfäden anlagern, ist in der Medizin ein gefürchteter Effekt. Er tritt normalerweise sehr schnell auf, wenn Materialien in den Körper eingesetzt wird. „Auf den hydrophoben Oberflächen werden die Proteine schnell denaturiert“, sagt Groll. Dadurch besteht die Gefahr, dass das Immunsystem aktiviert wird und die Wundheilung gestört – alles unerwünschte Nebenwirkungen. „Deshalb ist es äußerst wichtig, die Anlagerung solcher Proteine zu verhindern“, so der Polymerchemiker.

Baugerüst für körpereigene Zellen

Andere Anheftungen sind hingegen mehr als erwünscht: Körpereigene Zellen sollen sich an den Faserstrukturen anlagern, untereinander verbinden und zu einer kompakten Struktur heranwachsen. Auf diese Weise können Mediziner beispielsweise dem Körper dabei helfen, großflächige Verletzungen schneller wieder zu schließen. Im Labor arbeiten Wissenschaftler daran, mit Hilfe dieser Fasern neue Gewebe, möglicherweise sogar neue Organe zu produzieren. Dazu „basteln“ sie mit den Polymerfäden dreidimensionale Gerüste in der benötigten Form, auf denen sich anschließend die gewünschten Zellen ansiedeln – beispielsweise Leberzellen, wenn es darum geht, eine neue Leber herzustellen, oder Knorpelzellen, die Ersatz für zerstörte Gelenkoberflächen schaffen sollen.

Der Vorteil solcher Implantate liegt auf der Hand: Weil sich das neue Organ aus Zellen des jeweiligen Patienten entwickelt hat, kommt es nach der Implantation zu keiner Abstoßungsreaktion. Auf eine medikamentöse Therapie, die heutzutage nach Fremdtransplantationen zwingend erforderlich ist, kann deshalb verzichtet werden. Und die Fasern werden nach wenigen Monaten rückstandslos abgebaut.

Neue Organe wachsen im Labor

„Je nachdem, welche Zellen sich an den Fasern anlagern sollen, geben wir ihnen die entsprechenden bioaktive Peptide auf der Oberfläche mit“, sagt Groll. Diese sorgen dafür, dass genau die Zellen angelockt werden, die im jeweiligen Fall benötigt werden.

Mit der von Groll und seinen Mitarbeitern entwickelten Technik lassen sich jetzt deutlich schneller als bisher Fasern und Faserstrukturen herstellen und mit den unterschiedlichsten Eigenschaften versehen. Groll ist überzeugt davon, dass es diese Technik schon in naher Zukunft möglich macht, im Labor Strukturen zu konstruieren, auf denen komplexe Gewebe wachsen können.

“Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation”, Dirk Grafahrend, Karl-Heinz Heffels, Meike V. Beer, Peter Gasteier, Martin Möller, Gabriele Boehm, Paul D. Dalton and Jürgen Groll. Nature Materials, DOI: 10.1038/NMAT2904

Kontakt
Professor Jürgen Groll,
T: (0931) 201 73610,
E-Mail: juergen.groll@fmz.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beton - gebaut für die Ewigkeit? Ressourceneinsparung mit Reyclingbeton
19.04.2017 | Hochschule Konstanz

nachricht Gelatine statt Unterarm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie