Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Material für dichtere Magnetspeicher

27.03.2015

Neue Legierungen, die sich stark magnetisieren lassen, ermöglichen höhere Speicherdichten auf Festplatten

Informationstechnologie ist heute auch eine Herausforderung für die Materialwissenschaft: Sie braucht Materialien mit neuen magnetischen Eigenschaften, etwa für neuartige Speichermedien oder Festplatten-Leseköpfe. Dresdner Max-Planck-Forscher können da helfen. Denn sie können neue Materialien mit gewünschten magnetischen Eigenschaften am Computer designen und anschließend im Labor herstellen. Auf diese Weise hat ein Team um Claudia Felser, Direktorin am Max-Planck-Institut für chemische Physik fester Stoffe, nun eine Legierung konzipiert und hergestellt, die so stark magnetisiert werden kann wie bislang kein anderes Material. Und das obwohl der Stoff zunächst nicht-magnetisch zu sein scheint. Doch die Verbindung aus Mangan, Platin und Gallium wird durch ein äußeres Magnetfeld selbst magnetisch und behält auch nach Abschalten des äußeren Feldes ein starkes inneres Feld. Dass die Forscher einen solchen Effekt mit einem zweiten Material auch bei Raumtemperatur erzielten, zeigt, wie relevant die in Dresden entwickelten Methoden des Materialdesigns für Anwendungen sind.

Magnetische Materialien spielen eine Schlüsselrolle in der Informationstechnologie. Festplatten beispielsweise speichern Information auf winzigen magnetischen Inselchen. Diese können ähnlich winzigen Kompassnadeln in entgegengesetzten Richtungen magnetisiert werden. Die zwei Zustände stehen für eine „0“ beziehungsweise eine „1“ und speichern so ein Bit Information. In Zukunft sollen die Inselchen immer weiter schrumpfen, um die Speicherkapazität weiter zu erhöhen. Die immer kleineren Inselchen könnten aber auch Grundlage für neue Speicherkonzepte sein. Damit diese Miniaturisierung weiter gelingt, müssen neue Legierungen entwickelt werden, die Magnetfelder auch dann noch festhalten, wenn ein Magnet-Inselchen nur noch wenige Nanometer klein ist. Das ist jedoch schwierig, weil eine kleine Kompassnadel leichter von Umwelteinflüssen gestört wird als eine größere.

Auch bei Leseköpfen wird dieses Problem in Zukunft eine Rolle spielen. Leseköpfe enthalten zwei magnetische Schichten, von denen eine als Referenzschicht eine feste Magnetisierung besitzt, während die Magnetisierung der zweiten durch die magnetischen Inselchen auf der Festplatte umgeschaltet wird. Je nach Orientierung gegenüber der Referenzschicht ändert sich der Stromfluss durch den Lesekopf, sodass die Information auf der Festplatte in elektrische Signale umgewandelt wird. Auch hier sucht man nach Materialien, die die Magnetisierung der Referenzschicht möglichst gut festhalten, um die Leseköpfe weiter verkleinern zu können. Gesucht sind also neue magnetischen Materialien, die diesen Anforderungen genügen.

Am Computer wird eine stark magnetisierbare Legierung designed

„Wir können Materialien mit sehr unterschiedlichen magnetischen Eigenschaften am Computer designen und anschließend herstellen“, sagt Claudia Felser, Direktorin am Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden. Auf diese Weise hat ihr Team nun eine Legierung mit sehr außergewöhnlichen Eigenschaften entwickelt. Eine nach außen unmagnetische Legierung aus den Metallen Mangan, Platin und Gallium behält ein starkes inneres Magnetfeld, nachdem es vorübergehend einem äußeren Magnetfeld ausgesetzt worden ist.

Das Material speichert sozusagen ein äußeres magnetisches Signal auf sehr störungsresistente Weise. Das innere Magnetfeld ist mit mehr als drei Tesla so stark wie das eines starken Magentresonanztomographen in der Medizin und gehört zu den größten bislang gemessenen. Diese starke und stabile Magnetisierung könnte helfen, die magnetische Stabilität stark miniaturisierter Bauelemente zu erhöhen.

Die Forscher stellten zunächst eine so genannte Heusler-Verbindung her. Dabei handelt es sich um eine Legierung, deren magnetische Eigenschaften sich grundlegend von denen der Einzelkomponenten unterscheiden. Die Atome eines bestimmten Metalls besitzen ein so genanntes magnetisches Moment, das man sich wie eine Kompassnadel vorstellen kann.

Magnetische Inseln richten sich am äußeren Magnetfeld aus

Verbinden sich Atome verschiedener Metalle zu einer Legierung, dann ordnen sie sich in einer bestimmten dreidimensionalen, gitterähnlichen Struktur nebeneinander an. Die magnetischen Momente beeinflussen sich gegenseitig, wobei sie sich parallel oder antiparallel anordnen können. Die Dresdner Forscher mischten Mangan, Platin und Gallium in einem ganz bestimmten Verhältnis, und zwar so, dass sich die magnetischen Momente der Mangan-Atome abwechselnd antiparallel ausrichteten. Auf diese Weise neutralisieren sich die magnetischen Momente gegenseitig. Einen solchen Kristall, der nach außen hin unmagnetisch erscheint, nennen Fachleute einen synthetischen Antiferromagneten.

Am High Field Magnet Laboratory (HFML) an der Radboud University in Nimwegen, Niederlande, ließen die Dresdner Forscher ihre Probe einem sehr großen Magnetfeld von 20 Tesla aussetzen. Unter Einwirkung dieses Magnetfeldes wurde die Legierung in dem Magnetfeld auf eine Temperatur von etwa minus 150 Grad Celsius abgekühlt. Dadurch entstand im Innern des Kristalls ein Magnetfeld von mehr als drei Tesla Stärke. Und selbst, als das Magnetfeld abgeschaltet wurde, behielt die Legierung ihr inneres Magnetfeld bei.

Die Dresdner Forscher erklären dieses Ergebnis so: Im Innern der Heusler-Verbindung gibt es winzige Inselchen, in denen sich die magnetischen Momente der einzelnen Atome nicht vollständig kompensieren. Legt man ein äußeres Feld an, drehen sich diese Inselchen in die Richtung des Magnetfeldes und wachsen in ihrer Größe. Sie addieren so ihre magnetischen Momente zu einem starken Magnetfeld. Nach dem Abschalten des Magnetfeldes bleiben die Inselchen in dieser Orientierung, da die Kompassnadeln an ihren Rändern mit den entgegengesetzt orientierten Kompassnadeln, die das Inselchen unmittelbar umgebenden, wechselwirken und dadurch festgehalten werden. Die magnetischen Momente, die das Inselchen einsäumen, wirken sozusagen wie Heftzwecken für dessen magnetische Orientierung.

Die Kommerzialisierung wird mit einem Festplattenhersteller vorangetrieben

Dieser Hafteffekt macht die Legierung interessant für Magnetspeicher, bei denen auch Bits im Nanoformat stabil bleiben. Ein weiterer Pluspunkt: Das Magnetfeld der Inselchen sind durch die entgegengesetzt orientierten Magnetmomente, die sie umgeben, voneinander ziemlich gut abgeschirmt. „Daher kann es benachbarte Magnete nicht negativ beeinflussen“, erklärt Felser. Somit lässt sich Information auf Festplatten oder künftigen magnetischen Arbeitsspeichern extrem dicht packen, ohne dass sich die Bits gegenseitig stören.

Der Mechanismus, der die Magnetisierung der Inselchen festhält, ist der gleiche, der bei Leseköpfen die Magnetisierung der Referenzschicht sichert, Fachleute sprechen von einem Exchange Bias. Daher sind die Ergebnisse auch für die weitere Miniaturisierung dieser Bauteile interessant.

Eine zweite Legierung aus Mangan, Eisen und Gallium zeigte ähnliche Effekte auch bei Raumtemperatur. „Das beweist, dass unser Konzept universell ist und sich eignet, Alltagsanwendungen zu realisieren“, sagt Claudia Felser.

Um die Kommerzialisierung ihrer Forschungsergebnisse voranzutreiben, arbeiten die Dresdener Forscher bereits mit einem Festplattenhersteller zusammen. Claudia Felser ist guter Dinge, weitere anwendungsrelevante Materialien im Computer zu designen. „Wir haben ein Team von etwa 50 Forschern, eine starke Theoriegruppe und eine synthetische Gruppe, welche die Materialien herstellen kann“, erklärt die Chemikerin. In kleineren Gruppen arbeiten sie an verschiedensten Materialdesigns. Etwa auch an neuen Thermoelektrika, die zum Umwandeln von Abwärme in elektrische Energie dienen sollen. Die Spezialität der Dresdener Forschergruppe sei es, Werkstoffe so zu designen, wie es sich potenzielle Anwender wünschen.


Ansprechpartner

Prof. Dr. Claudia Felser
Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden
Telefon: +49 351 4646-3001

Fax: +49 351 4646-3002

E-Mail: Claudia.Felser@cpfs.mpg.de

Max-Planck-Institut für Chemische Physik fester Stoffe


Originalpublikation
Ajaya K. Nayak, Michael Nicklas, Stanislav Chadov, Panchanana Khuntia, Chandra Shekhar, Adel Kalache, Michael Baenitz, Yurii Skourski, Veerendra K. Guduru, Alessandro Puri, Uli Zeitler, J. M. D. Coey and Claudia Felser

Design of compensated ferrimagnetic Heusler alloys for giant tunable exchange bias

Nature Materials, online veröffentlicht 16. März 2015; doi: 10.1038/NMAT4248

Prof. Dr. Claudia Felser | Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden
Weitere Informationen:
http://www.mpg.de/9086009/magnetspeicher-magnetisierbar-material

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics