Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mainzer Forscher entwickeln keimreduzierende Implantate

13.01.2011
Innovative Materialien sollen Keimbesiedlung auf Implantaten verhindern. Erste Produktentwicklungen schon in naher Zukunft zu erwarten.

Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz entwickeln derzeit Materialien, die das Entzündungsrisiko nach Operationen und in Wunden deutlich vermindern sollen.

Die Forscher arbeiten dazu in dem EU-Projekt EMBEK1 mit neun weiteren Forschungszentren und Industriepartnern aus Spanien, Großbritannien, der Schweiz und Deutschland zusammen. Die Studie ist auf drei Jahre angelegt und wird von der Europäischen Union mit 2,9 Millionen Euro gefördert.

Risiko von Wundentzündungen verringert

„Wir entwickeln Oberflächenbeschichtungen für Implantate und Wundauflagen, auf der die Keimbesiedlung nicht oder nur schwer möglich ist“, erklärt Dr. Renate Förch, Leiterin des Projekts und Wissenschaftlerin am MPI-P.

Besonderes Augenmerk liegt dabei auf den problematischen Krankenhauskeimen Staphylococcus aureus und Pseudomonas aeroginosa, die immer wieder neue Resistenzen auf Antibiotika zeigen. In einem entsprechenden Bericht verweist das Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) darauf, dass 2010 bereits 25 Prozent aller Bakterienstämme immun gegen Antibiotika seien. Mit den am MPI-P erforschten Methoden könnten bakterielle Infektionen bei solchen medizinischen Eingriffen schon im Ansatz verhindert werden. Dabei müssen die Forscher zunächst die biologischen Mechanismen der Anhaftung von Keimen auf Oberflächen und die genetischen Sequenzen, die bei den Anhaftungsprozessen eine Rolle spielen, identifizieren und untersuchen.

„Um die gewünschten Materialeigenschaften zu erzeugen, kommt bei uns die so genannte Plasma-Beschichtung von Oberflächen zum Einsatz“, erläutert Förch. Das am MPI für Polymerforschung eingesetzte Verfahren beschichtet die Oberfläche der Materialien mit bestimmten Kunststoff-ähnlichen Materialien (Plasmapolymeren) und Zink freisetzenden Strukturen. Keime können auf solchen Oberflächen weder siedeln noch sich vermehren.

Ein kooperatives Forscherteam aus Bath in Großbritannien hat sich alternativ dazu auf die Entwicklung einer abgewandelten Lösung basierend auf metallorganischen Hydrogelen spezialisiert. Eine weitere Forschergruppe der Eidgenössischen Materialprüfungs- und Forschungsanstalt (EMPA) in St. Gallen fokussiert ihre Entwicklung auf Silber speichernde und freisetzende Nanostrukturen mittels Plasmatechnologie. Bei allen Lösungsansätzen müssen die Forscher jedoch auch die Bioverträglichkeit der Beschichtung sowie die Lagerbeständigkeit und Haltbarkeit berücksichtigen. Die biomedizinischen Eigenschaften werden von Forscherteams vom rechtsmedizinischen Institut des Universitätsklinikums Köln, der Universität Exeter (UK), Consejo Superio de Investigaciones Cientificas aus Barcelona (Spanien) und der Universitätsmedizin Mainz untersucht.

Gute Zukunftsaussichten für innovative Produktentwicklungen

Die beteiligten Forschungsteams treffen sich am 17. und 18. Januar 2011 in Köln, um eine Zwischenbilanz Ihrer zweieinhalbjährigen Arbeit zu ziehen.

Die Ergebnisse aus dem Embek1 Projekt werden bereits in einem Folgeprojekt weiterentwickelt: Die BacterioSafe-Studie wird ebenfalls mit 3,4 Millionen Euro von der EU unterstützt. Im Rahmen dieser Studie werden am MPI-P Verfahren entwickeln, die sowohl die Freisetzung antibakterieller Stoffe auf Wundverbänden erlauben als auch das Vorhandensein pathogener Keime anzeigen. Dabei müssen die Forscher zunächst die biologischen Mechanismen krankheitsauslösender Keime identifizieren. Eben diese sollen die Freisetzung der Signalfarbstoffe und antibakteriellen Lösungen durch Nanokapseln und Nanovesikeln induzieren.

Förch geht davon aus, dass nach dem erfolgreichen Abschluss des EMBEK1 Projekts im Sommer 2011 und der BacterioSafe-Studie in dreieinhalb Jahren erste innovative Produktentwicklungen schon bald praktische Anwendung finden werden.

Renate Förch ist Redaktionsleiterin der wissenschaftlichen Zeitschrift „Plasma Processes and Polymers“ des Wiley-VCH Verlags in Weinheim und Projektleiterin einer Forschungsgruppe am MPI-P, in der sich 10 Forscherinnen und Forscher mit den Grundlagen der Plasmapolymerisation für biomedizinische Anwendungen beschäftigen. Förch nahm ihre Arbeit am Institut 1996 auf, nachdem sie ihre wissenschaftliche Karriere bereits in England und Canada begonnen und seit 1992 am Institut für Mikrotechnik in Mainz (IMM) gearbeitet hatte.

Hier finden Sie weiterführende Information zum EMBEK1-Projekt: http://www.mpip-mainz.mpg.de/eu-projekte/embek1/

Und dem BacterioSafe Projekt:
http://www.mpip-mainz.mpg.de/eu-projekte/bacteriosafe/

Stephan Imhof | Max-Planck-Institut
Weitere Informationen:
http://www.mpip-mainz.mpg.de/eu-projekte/bacteriosafe/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?
30.03.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE