Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mainzer Forscher entwickeln keimreduzierende Implantate

13.01.2011
Innovative Materialien sollen Keimbesiedlung auf Implantaten verhindern. Erste Produktentwicklungen schon in naher Zukunft zu erwarten.

Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz entwickeln derzeit Materialien, die das Entzündungsrisiko nach Operationen und in Wunden deutlich vermindern sollen.

Die Forscher arbeiten dazu in dem EU-Projekt EMBEK1 mit neun weiteren Forschungszentren und Industriepartnern aus Spanien, Großbritannien, der Schweiz und Deutschland zusammen. Die Studie ist auf drei Jahre angelegt und wird von der Europäischen Union mit 2,9 Millionen Euro gefördert.

Risiko von Wundentzündungen verringert

„Wir entwickeln Oberflächenbeschichtungen für Implantate und Wundauflagen, auf der die Keimbesiedlung nicht oder nur schwer möglich ist“, erklärt Dr. Renate Förch, Leiterin des Projekts und Wissenschaftlerin am MPI-P.

Besonderes Augenmerk liegt dabei auf den problematischen Krankenhauskeimen Staphylococcus aureus und Pseudomonas aeroginosa, die immer wieder neue Resistenzen auf Antibiotika zeigen. In einem entsprechenden Bericht verweist das Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) darauf, dass 2010 bereits 25 Prozent aller Bakterienstämme immun gegen Antibiotika seien. Mit den am MPI-P erforschten Methoden könnten bakterielle Infektionen bei solchen medizinischen Eingriffen schon im Ansatz verhindert werden. Dabei müssen die Forscher zunächst die biologischen Mechanismen der Anhaftung von Keimen auf Oberflächen und die genetischen Sequenzen, die bei den Anhaftungsprozessen eine Rolle spielen, identifizieren und untersuchen.

„Um die gewünschten Materialeigenschaften zu erzeugen, kommt bei uns die so genannte Plasma-Beschichtung von Oberflächen zum Einsatz“, erläutert Förch. Das am MPI für Polymerforschung eingesetzte Verfahren beschichtet die Oberfläche der Materialien mit bestimmten Kunststoff-ähnlichen Materialien (Plasmapolymeren) und Zink freisetzenden Strukturen. Keime können auf solchen Oberflächen weder siedeln noch sich vermehren.

Ein kooperatives Forscherteam aus Bath in Großbritannien hat sich alternativ dazu auf die Entwicklung einer abgewandelten Lösung basierend auf metallorganischen Hydrogelen spezialisiert. Eine weitere Forschergruppe der Eidgenössischen Materialprüfungs- und Forschungsanstalt (EMPA) in St. Gallen fokussiert ihre Entwicklung auf Silber speichernde und freisetzende Nanostrukturen mittels Plasmatechnologie. Bei allen Lösungsansätzen müssen die Forscher jedoch auch die Bioverträglichkeit der Beschichtung sowie die Lagerbeständigkeit und Haltbarkeit berücksichtigen. Die biomedizinischen Eigenschaften werden von Forscherteams vom rechtsmedizinischen Institut des Universitätsklinikums Köln, der Universität Exeter (UK), Consejo Superio de Investigaciones Cientificas aus Barcelona (Spanien) und der Universitätsmedizin Mainz untersucht.

Gute Zukunftsaussichten für innovative Produktentwicklungen

Die beteiligten Forschungsteams treffen sich am 17. und 18. Januar 2011 in Köln, um eine Zwischenbilanz Ihrer zweieinhalbjährigen Arbeit zu ziehen.

Die Ergebnisse aus dem Embek1 Projekt werden bereits in einem Folgeprojekt weiterentwickelt: Die BacterioSafe-Studie wird ebenfalls mit 3,4 Millionen Euro von der EU unterstützt. Im Rahmen dieser Studie werden am MPI-P Verfahren entwickeln, die sowohl die Freisetzung antibakterieller Stoffe auf Wundverbänden erlauben als auch das Vorhandensein pathogener Keime anzeigen. Dabei müssen die Forscher zunächst die biologischen Mechanismen krankheitsauslösender Keime identifizieren. Eben diese sollen die Freisetzung der Signalfarbstoffe und antibakteriellen Lösungen durch Nanokapseln und Nanovesikeln induzieren.

Förch geht davon aus, dass nach dem erfolgreichen Abschluss des EMBEK1 Projekts im Sommer 2011 und der BacterioSafe-Studie in dreieinhalb Jahren erste innovative Produktentwicklungen schon bald praktische Anwendung finden werden.

Renate Förch ist Redaktionsleiterin der wissenschaftlichen Zeitschrift „Plasma Processes and Polymers“ des Wiley-VCH Verlags in Weinheim und Projektleiterin einer Forschungsgruppe am MPI-P, in der sich 10 Forscherinnen und Forscher mit den Grundlagen der Plasmapolymerisation für biomedizinische Anwendungen beschäftigen. Förch nahm ihre Arbeit am Institut 1996 auf, nachdem sie ihre wissenschaftliche Karriere bereits in England und Canada begonnen und seit 1992 am Institut für Mikrotechnik in Mainz (IMM) gearbeitet hatte.

Hier finden Sie weiterführende Information zum EMBEK1-Projekt: http://www.mpip-mainz.mpg.de/eu-projekte/embek1/

Und dem BacterioSafe Projekt:
http://www.mpip-mainz.mpg.de/eu-projekte/bacteriosafe/

Stephan Imhof | Max-Planck-Institut
Weitere Informationen:
http://www.mpip-mainz.mpg.de/eu-projekte/bacteriosafe/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften