Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Mahlgrad macht‘s

17.07.2013
In Nanomaterialien ändert sich die Struktur der einzelnen Kristalle mit der Korngröße

Die Eigenschaften mancher Nanomaterialien könnten sich künftig leichter vorhersagen lassen. Wissenschaftler des Max-Planck-Institut für Intelligente Systeme in Stuttgart haben Metalle schrittweise zu immer feineren Pulvern zermahlen und einen detaillierten Katalog aufgestellt, wie sich die Struktur der Metallkörner in Abhängigkeit von deren Größe ändert.


Nanomaterialien schrumpfen und dehnen sich aus: Mit kleiner werdender Korngröße verringern sich die Abstände zwischen den Atomen zunächst; unterhalb einer kritischen Korngröße nehmen sie wieder zu. Der Grund dafür ist, dass Oberflächenspannung und Überschussvolumen miteinander konkurrieren, und letzteres unterhalb der kritischen Korngröße die Oberhand gewinnt.
© Eric Mittemeijer u. Sairam Meka

Demnach schrumpfen die Kristallgitter zunächst, dehnen sich unterhalb einer gewissen Schwelle aber wieder aus. Die Anordnung und Abstände der Atome entscheiden über zahlreiche Eigenschaften eines Materials. Wenn es möglich ist, Kristallgitter abhängig von der Teilchengröße genau zu charakterisieren, dürfte sich daher auch genauer berechnen lassen, wie sich Nanopartikel einer bestimmten Größe verhalten.

Je feiner Kaffee gemahlen wird, desto intensiver der Geschmack. Um den Zusammenhang von Eigenschaften und Mahlgrad geht es auch den Wissenschaftlern um Eric Jan Mittemeijer, Direktor am Max-Planck Institut für Intelligente Systeme. Sie arbeiten allerdings nicht mit Kaffee, sondern mit Metallen im Nanoformat. Bei verschiedenen sehr feinen Metallpulvern stellten sie fest, dass die Metallatome in den einzelnen großen kristallinen Körnern desto näher zusammenrücken, je feiner sie die Körner zerreiben. Dadurch verdichtet sich das Kristallgitter des Materials. Sobald die Körner im Durchmesser jedoch weniger als etwa 30 Nanometer messen, verhalten sich die Atome umgekehrt und das Kristallgitter dehnt sich wieder aus.

Materialwissenschaftler wissen schon länger, dass ein und dasselbe Material abhängig von der Größe seiner Teilchen verschiedene – teilweise sogar gegensätzliche – Eigenschaften aufweisen kann. Das gilt vor allem, wenn die Abmessungen einer Materialprobe in den Nanometerbereich sinken. Auch über die Gründe des unterschiedlichen Verhaltens von sehr feinen und gröberen Körnchen ist bereits einiges bekannt. In großen Metallkristallen sind die meisten Atome von weiteren gleichartigen Atomen vollkommen eingeschlossen. In einem solchen geordneten Gitter befinden sich die abstoßenden und anziehenden Kräfte zwischen den Metallatomen im Gleichgewicht.

In Nanokörnern prägen Oberflächenatome die Materialeigenschaften

Nanokristalle bestehen dagegen nur aus relativ wenigen Atomen, von denen ein recht großer Teil an der Oberfläche der Körner liegt. Mit abnehmender Korngröße vergrößert sich das Verhältnis von Oberfläche zu Volumen. Die Oberflächenatome sind nicht an allen Seiten von gleichen Atomen umgeben und prägen ab einer bestimmten Kristallgröße die Materialeigenschaften wie die Farbe, Leitfähigkeit, magnetische Eigenschaften und Härte des Stoffs.

Die nanokristallinen Materialien stellten die Forscher her, indem sie Nickel, Eisen, Kupfer und Wolfram in einer Kugelmühle pulverisierten. Dabei zerstoßen Stahlkugeln die Metalle in einer zylinderförmigen Trommel zu winzig kleinen Kristallen. Erstmals untersuchten die Stuttgarter Wissenschaftler nun mittels Elektronenmikroskopie und Röntgenbeugungsanalyse systematisch, wie genau die Atome in immer feiner zermahlenen Metallkristallen angeordnet sind. Dabei interessierten sie sich vor allem dafür, wie sich die Abstände zwischen den Atomen im Kristallgitter in Abhängigkeit von der Kristallkorngröße verändern.

Entsprechend ihren Erwartungen beobachteten die Wissenschaftler zunächst, dass sich das Kristallgitter in den vier untersuchten Metallen mit sinkender Korngröße zusammenzieht. „Als wir die Versuchsreihe jedoch mit immer kleineren Körnern weiterführten, machten wir eine überraschende Entdeckung“, sagt Eric Jan Mittemeijer: „Unterschreitet die Körnung eine bestimmte Größe im Nanometerbereich, dehnt sich das Kristallgitter wieder aus und die Abstände zwischen den Atomen nehmen zu.“

Oberflächenspannung und Überschussvolumen konkurrieren miteinander

Dass die Abstände zwischen den Atomen in Nanokristallen von der Korngröße abhängig sind, erklären die Wissenschaftler als Ergebnis zweier konkurrierender Einflüsse: Oberflächenspannung und überschüssiges freies Volumen. Bei Metallen haben die Atome, die geordnet und dicht im Inneren liegen und daher viele Bindungen zu anderen Atomen besitzen, eine niedrigere Energie als Atome an der Kornoberfläche, denen einige Bindungspartner fehlen. Dadurch kommt es zu einer Oberflächenspannung. Diese lässt die Atome mit abnehmender Korngröße, und daher mit zunehmendem Verhältnis von Oberfläche zu Volumen, immer näher aneinander rücken.

Unterhalb einer bestimmten Größe kommt ein weiterer Effekt der Kornoberflächenatome zum tragen. Wo zwei Nanokörner aufeinander treffen, entsteht eine sogenannte Korngrenze. Die Oberflächenatome benachbarter Körner, das heißt die Atome in der Korngrenze, versuchen eine Kompromiss-Position zwischen den aufeinander treffenden Kristallgittern einzunehmen. Sie verschieben sich also von ihren eigentlichen Gitterplätzen und beanspruchen ein größeres Volumen als Atome, welche in einem regelmäßigen Gitter eine feste Position innehaben. Die Forscher sprechen von überschüssigem freiem Volumen in den Korngrenzen, welches bei Nanomaterialien sehr ausgeprägt sein kann. Dieses freie Volumen in den Korngrenzen von Nanomaterialien erzeugt ein Spannungsfeld, das die Abstände zwischen den benachbarten Atomen in den Nanokristallen vergrössert.

„Der Einfluss dieses überschüssigen freien Volumens auf die Gitterposition der Atome kann bei Objekten, die größer als etwa 30 Nanometer sind, getrost vernachlässigt werden“, sagt Mittemeijer. „Es prägt jedoch das Verhalten von kleineren Objekten, während die Oberflächenspannung an Bedeutung verliert.“

Die Forschung der Max-Planck-Wissenschaftler dürfte sich für die Materialwissenschaft als von wesentlicher Bedeutung erweisen. „Unsere Forschung trägt dazu bei, die Eigenschaften von Nanomaterialien besser zu verstehen, so dass beispielsweise ein Ingenieur weiß, welches Nanomaterial für seine Arbeit oder sein Produkt geeignet ist“, sagt Gayatri Rane, die an der Studie entscheidend mitgewirkt hat. Und Sai Ramudu Meka, der daran ebenfalls maßgeblich beteiligt war, ergänzt: „Wenn wir nicht wissen, wie sich ein Material verhält, können wir es auch nicht richtig einsetzen.“

Ansprechpartner
Prof. Dr. Eric Jan Mittemeijer
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-9993310
Fax: +49 711 689-9993312
E-Mail: e.j.mittemeijer@­mf.mpg.de
Originalpublikation
Gayatri Koyar Rane, Udo Welzel, Sai Ramudu Meka und Eric Jan Mittemeijer
Non-monotonic lattice parameter variation with crystallite size in nanocrystalline solids

Acta Materialia, Juli 2013; doi: 10.1016/j.actamat.2013.04.021

Prof. Dr. Eric Jan Mittemeijer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7459716/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Biotinte für den Druck gewebeähnlicher Strukturen
19.10.2017 | Forschungszentrum Jülich, Jülich Centre for Neutron Science

nachricht Was winzige Strukturen über Materialeigenschaften verraten
19.10.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Aufräumen? Nicht ohne Helfer

19.10.2017 | Biowissenschaften Chemie

Neue Biotinte für den Druck gewebeähnlicher Strukturen

19.10.2017 | Materialwissenschaften

Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden

19.10.2017 | Physik Astronomie