Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Mahlgrad macht‘s

17.07.2013
In Nanomaterialien ändert sich die Struktur der einzelnen Kristalle mit der Korngröße

Die Eigenschaften mancher Nanomaterialien könnten sich künftig leichter vorhersagen lassen. Wissenschaftler des Max-Planck-Institut für Intelligente Systeme in Stuttgart haben Metalle schrittweise zu immer feineren Pulvern zermahlen und einen detaillierten Katalog aufgestellt, wie sich die Struktur der Metallkörner in Abhängigkeit von deren Größe ändert.


Nanomaterialien schrumpfen und dehnen sich aus: Mit kleiner werdender Korngröße verringern sich die Abstände zwischen den Atomen zunächst; unterhalb einer kritischen Korngröße nehmen sie wieder zu. Der Grund dafür ist, dass Oberflächenspannung und Überschussvolumen miteinander konkurrieren, und letzteres unterhalb der kritischen Korngröße die Oberhand gewinnt.
© Eric Mittemeijer u. Sairam Meka

Demnach schrumpfen die Kristallgitter zunächst, dehnen sich unterhalb einer gewissen Schwelle aber wieder aus. Die Anordnung und Abstände der Atome entscheiden über zahlreiche Eigenschaften eines Materials. Wenn es möglich ist, Kristallgitter abhängig von der Teilchengröße genau zu charakterisieren, dürfte sich daher auch genauer berechnen lassen, wie sich Nanopartikel einer bestimmten Größe verhalten.

Je feiner Kaffee gemahlen wird, desto intensiver der Geschmack. Um den Zusammenhang von Eigenschaften und Mahlgrad geht es auch den Wissenschaftlern um Eric Jan Mittemeijer, Direktor am Max-Planck Institut für Intelligente Systeme. Sie arbeiten allerdings nicht mit Kaffee, sondern mit Metallen im Nanoformat. Bei verschiedenen sehr feinen Metallpulvern stellten sie fest, dass die Metallatome in den einzelnen großen kristallinen Körnern desto näher zusammenrücken, je feiner sie die Körner zerreiben. Dadurch verdichtet sich das Kristallgitter des Materials. Sobald die Körner im Durchmesser jedoch weniger als etwa 30 Nanometer messen, verhalten sich die Atome umgekehrt und das Kristallgitter dehnt sich wieder aus.

Materialwissenschaftler wissen schon länger, dass ein und dasselbe Material abhängig von der Größe seiner Teilchen verschiedene – teilweise sogar gegensätzliche – Eigenschaften aufweisen kann. Das gilt vor allem, wenn die Abmessungen einer Materialprobe in den Nanometerbereich sinken. Auch über die Gründe des unterschiedlichen Verhaltens von sehr feinen und gröberen Körnchen ist bereits einiges bekannt. In großen Metallkristallen sind die meisten Atome von weiteren gleichartigen Atomen vollkommen eingeschlossen. In einem solchen geordneten Gitter befinden sich die abstoßenden und anziehenden Kräfte zwischen den Metallatomen im Gleichgewicht.

In Nanokörnern prägen Oberflächenatome die Materialeigenschaften

Nanokristalle bestehen dagegen nur aus relativ wenigen Atomen, von denen ein recht großer Teil an der Oberfläche der Körner liegt. Mit abnehmender Korngröße vergrößert sich das Verhältnis von Oberfläche zu Volumen. Die Oberflächenatome sind nicht an allen Seiten von gleichen Atomen umgeben und prägen ab einer bestimmten Kristallgröße die Materialeigenschaften wie die Farbe, Leitfähigkeit, magnetische Eigenschaften und Härte des Stoffs.

Die nanokristallinen Materialien stellten die Forscher her, indem sie Nickel, Eisen, Kupfer und Wolfram in einer Kugelmühle pulverisierten. Dabei zerstoßen Stahlkugeln die Metalle in einer zylinderförmigen Trommel zu winzig kleinen Kristallen. Erstmals untersuchten die Stuttgarter Wissenschaftler nun mittels Elektronenmikroskopie und Röntgenbeugungsanalyse systematisch, wie genau die Atome in immer feiner zermahlenen Metallkristallen angeordnet sind. Dabei interessierten sie sich vor allem dafür, wie sich die Abstände zwischen den Atomen im Kristallgitter in Abhängigkeit von der Kristallkorngröße verändern.

Entsprechend ihren Erwartungen beobachteten die Wissenschaftler zunächst, dass sich das Kristallgitter in den vier untersuchten Metallen mit sinkender Korngröße zusammenzieht. „Als wir die Versuchsreihe jedoch mit immer kleineren Körnern weiterführten, machten wir eine überraschende Entdeckung“, sagt Eric Jan Mittemeijer: „Unterschreitet die Körnung eine bestimmte Größe im Nanometerbereich, dehnt sich das Kristallgitter wieder aus und die Abstände zwischen den Atomen nehmen zu.“

Oberflächenspannung und Überschussvolumen konkurrieren miteinander

Dass die Abstände zwischen den Atomen in Nanokristallen von der Korngröße abhängig sind, erklären die Wissenschaftler als Ergebnis zweier konkurrierender Einflüsse: Oberflächenspannung und überschüssiges freies Volumen. Bei Metallen haben die Atome, die geordnet und dicht im Inneren liegen und daher viele Bindungen zu anderen Atomen besitzen, eine niedrigere Energie als Atome an der Kornoberfläche, denen einige Bindungspartner fehlen. Dadurch kommt es zu einer Oberflächenspannung. Diese lässt die Atome mit abnehmender Korngröße, und daher mit zunehmendem Verhältnis von Oberfläche zu Volumen, immer näher aneinander rücken.

Unterhalb einer bestimmten Größe kommt ein weiterer Effekt der Kornoberflächenatome zum tragen. Wo zwei Nanokörner aufeinander treffen, entsteht eine sogenannte Korngrenze. Die Oberflächenatome benachbarter Körner, das heißt die Atome in der Korngrenze, versuchen eine Kompromiss-Position zwischen den aufeinander treffenden Kristallgittern einzunehmen. Sie verschieben sich also von ihren eigentlichen Gitterplätzen und beanspruchen ein größeres Volumen als Atome, welche in einem regelmäßigen Gitter eine feste Position innehaben. Die Forscher sprechen von überschüssigem freiem Volumen in den Korngrenzen, welches bei Nanomaterialien sehr ausgeprägt sein kann. Dieses freie Volumen in den Korngrenzen von Nanomaterialien erzeugt ein Spannungsfeld, das die Abstände zwischen den benachbarten Atomen in den Nanokristallen vergrössert.

„Der Einfluss dieses überschüssigen freien Volumens auf die Gitterposition der Atome kann bei Objekten, die größer als etwa 30 Nanometer sind, getrost vernachlässigt werden“, sagt Mittemeijer. „Es prägt jedoch das Verhalten von kleineren Objekten, während die Oberflächenspannung an Bedeutung verliert.“

Die Forschung der Max-Planck-Wissenschaftler dürfte sich für die Materialwissenschaft als von wesentlicher Bedeutung erweisen. „Unsere Forschung trägt dazu bei, die Eigenschaften von Nanomaterialien besser zu verstehen, so dass beispielsweise ein Ingenieur weiß, welches Nanomaterial für seine Arbeit oder sein Produkt geeignet ist“, sagt Gayatri Rane, die an der Studie entscheidend mitgewirkt hat. Und Sai Ramudu Meka, der daran ebenfalls maßgeblich beteiligt war, ergänzt: „Wenn wir nicht wissen, wie sich ein Material verhält, können wir es auch nicht richtig einsetzen.“

Ansprechpartner
Prof. Dr. Eric Jan Mittemeijer
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-9993310
Fax: +49 711 689-9993312
E-Mail: e.j.mittemeijer@­mf.mpg.de
Originalpublikation
Gayatri Koyar Rane, Udo Welzel, Sai Ramudu Meka und Eric Jan Mittemeijer
Non-monotonic lattice parameter variation with crystallite size in nanocrystalline solids

Acta Materialia, Juli 2013; doi: 10.1016/j.actamat.2013.04.021

Prof. Dr. Eric Jan Mittemeijer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7459716/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Studie InLight: Einblicke in chemische Prozesse mit Licht
22.11.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Eigenschaften von Magnetmaterialien gezielt ändern
16.11.2016 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie