Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht aus Silizium-Nanokristall-Leuchtdioden

13.02.2013
Sie sind wenige Nanometer klein und besitzen großes Leuchtpotenzial: Nanokristalle aus Silizium.
Einem interdisziplinären Team von Wissenschaftlern des KIT und der Universität Toronto/Kanada ist es nun gelungen, siliziumbasierte Leuchtdioden (SiLEDs) herzustellen. Sie sind schwermetallfrei und können Licht in verschiedenen Farben emittieren. In der Fachzeitschrift „Nano Letters“ stellt das Team aus Chemikern, Material- und Nanowissenschaftlern sowie Experten der Optoelektronik nun seine Entwicklung erstmals vor. (DOI: 10.1021/nl3038689)

Silizium dominiert die gesamte Mikroelektronik- und Photovoltaikindustrie, galt jedoch lange als ungeeignet für Leuchtdioden. In nanoskopischen Dimensionen verhält es sich allerdings anders: Winzigen Nanokristallen aus Silizium lässt sich durchaus Licht entlocken. Diese Nanokristalle bestehen aus nur wenigen hundert bis tausend Atomen und weisen ein erhebliches Potenzial als hocheffiziente Lichtemitter auf, wie die Forschergruppe um Professor Uli Lemmer und Professorin Annie K. Powell vom Karlsruher Institut für Technologie (KIT) sowie Professor Geoffrey A. Ozin von der Universität Toronto nachgewiesen hat. In einem gemeinsamen Projekt ist es den Wissenschaftlern nun gelungen, aus den Silizium-Nanokristallen hocheffiziente Leuchtdioden herzustellen.

Flüssigprozessierte SiLEDs: Die Änderung der Größe der Silizium-Nanokristalle ermöglicht es, die Farbe des ausgesandten Lichts zu variieren.
Abbildung: F. Maier-Flaig, KIT/LTI

Bisher war die Herstellung von Silizum-Leuchtdioden tatsächlich auf den roten sichtbaren Spektralbereich und den Bereich des Nahen Infrarots beschränkt. Bei der Effizienz von Silizium-Leuchtdioden, die rotes Licht emittieren, sind die Karlsruher Forscher bereits weltweit führend. „Ein absolutes Novum ist jedoch die kontrollierte Herstellung von Leuchtdioden, welche Licht in den verschiedensten Farben emittieren“, erklärt Florian Maier-Flaig, wissenschaftlicher Mitarbeiter am Lichttechnischen Institut (LTI) des KIT sowie Doktorand der Karlsruhe School of Optics & Photonics (KSOP). Durch gezielte Auftrennung der Nanopartikel nach ihrer Größe können die KIT-Wissenschaftler die Emissionsfarbe der Leuchtdioden nun gezielt einstellen. „Darüber hinaus zeigen unsere Leuchtdioden eine erstaunliche Langzeitstabilität, die bisher nicht erreicht wurde“, berichtet Maier-Flaig. Die erhöhte Lebensdauer der Bauteile unter Betrieb ist dem Einsatz von Nanopartikeln jeweils nur einer Größe zu verdanken. Dadurch halten die empfindlichen Dünnschichtbauteile länger. Kurzschlüsse beispielsweise durch übergroße Partikel lassen sich so vermeiden.

Die Entwicklung der Forscher aus Karlsruhe und Toronto zeichnet sich überdies durch eine beeindruckende Homogenität der leuchtenden Flächen aus. Die KIT-Forscher gehören zu den wenigen Teams auf der ganzen Welt, die über die entsprechende Herstellungsexpertise verfügen. „Mit den flüssigprozessierten Silizium-Leuchtdioden, welche potenziell ebenso großflächig wie kostengünstig herstellbar sind, betritt die Nanopartikel-Community wirkliches Neuland, deren Potenzial heute nur schwer abzuschätzen ist. Vermutlich aber müssen Lehrbücher über Halbleiterbauteile neu geschrieben werden“, sagt Geoffrey A. Ozin, der derzeit auch als KIT Distinguished Research Fellow am Center for Functional Nanostructures (CFN) des KIT tätig ist.

Ein weiterer Vorteil der SiLEDs ist, dass sie ohne Schwermetalle auskommen. Anders als das von anderen Forschergruppen eingesetzte Cadmiumselenid oder auch Cadmiumsulfid oder Bleisulfid ist Silizium als Ausgangsmaterial für lichtemittiernde Nanopartikel nicht toxisch. Silizium ist außerdem kostengünstig und auf der Erde reichlich verfügbar. Aufgrund der vielen Vorzüge werden die Forscher die SiLEDs in Zusammenarbeit mit weiteren Partnern weiterentwickeln.

Florian Maier-Flaig, Julia Rinck, Moritz Stephan, Tobias Bocksrocker, Michael Bruns, Christian Ku¨bel, Annie K. Powell, Geo?rey A. Ozin, and Uli Lemmer: Multicolor Silicon Light-Emitting Diodes (SiLEDs). In: Nano Letters. DOI: 10.1021/nl3038689

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:

Kosta Schinarakis
PKM – Themenscout
Tel.: +49 721 608 41956
Fax: +49 721 608 43658
E-Mail:schinarakis@kit.edu

Kosta Schinarakis | KIT
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise