Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht aus Silizium-Nanokristall-Leuchtdioden

13.02.2013
Sie sind wenige Nanometer klein und besitzen großes Leuchtpotenzial: Nanokristalle aus Silizium.
Einem interdisziplinären Team von Wissenschaftlern des KIT und der Universität Toronto/Kanada ist es nun gelungen, siliziumbasierte Leuchtdioden (SiLEDs) herzustellen. Sie sind schwermetallfrei und können Licht in verschiedenen Farben emittieren. In der Fachzeitschrift „Nano Letters“ stellt das Team aus Chemikern, Material- und Nanowissenschaftlern sowie Experten der Optoelektronik nun seine Entwicklung erstmals vor. (DOI: 10.1021/nl3038689)

Silizium dominiert die gesamte Mikroelektronik- und Photovoltaikindustrie, galt jedoch lange als ungeeignet für Leuchtdioden. In nanoskopischen Dimensionen verhält es sich allerdings anders: Winzigen Nanokristallen aus Silizium lässt sich durchaus Licht entlocken. Diese Nanokristalle bestehen aus nur wenigen hundert bis tausend Atomen und weisen ein erhebliches Potenzial als hocheffiziente Lichtemitter auf, wie die Forschergruppe um Professor Uli Lemmer und Professorin Annie K. Powell vom Karlsruher Institut für Technologie (KIT) sowie Professor Geoffrey A. Ozin von der Universität Toronto nachgewiesen hat. In einem gemeinsamen Projekt ist es den Wissenschaftlern nun gelungen, aus den Silizium-Nanokristallen hocheffiziente Leuchtdioden herzustellen.

Flüssigprozessierte SiLEDs: Die Änderung der Größe der Silizium-Nanokristalle ermöglicht es, die Farbe des ausgesandten Lichts zu variieren.
Abbildung: F. Maier-Flaig, KIT/LTI

Bisher war die Herstellung von Silizum-Leuchtdioden tatsächlich auf den roten sichtbaren Spektralbereich und den Bereich des Nahen Infrarots beschränkt. Bei der Effizienz von Silizium-Leuchtdioden, die rotes Licht emittieren, sind die Karlsruher Forscher bereits weltweit führend. „Ein absolutes Novum ist jedoch die kontrollierte Herstellung von Leuchtdioden, welche Licht in den verschiedensten Farben emittieren“, erklärt Florian Maier-Flaig, wissenschaftlicher Mitarbeiter am Lichttechnischen Institut (LTI) des KIT sowie Doktorand der Karlsruhe School of Optics & Photonics (KSOP). Durch gezielte Auftrennung der Nanopartikel nach ihrer Größe können die KIT-Wissenschaftler die Emissionsfarbe der Leuchtdioden nun gezielt einstellen. „Darüber hinaus zeigen unsere Leuchtdioden eine erstaunliche Langzeitstabilität, die bisher nicht erreicht wurde“, berichtet Maier-Flaig. Die erhöhte Lebensdauer der Bauteile unter Betrieb ist dem Einsatz von Nanopartikeln jeweils nur einer Größe zu verdanken. Dadurch halten die empfindlichen Dünnschichtbauteile länger. Kurzschlüsse beispielsweise durch übergroße Partikel lassen sich so vermeiden.

Die Entwicklung der Forscher aus Karlsruhe und Toronto zeichnet sich überdies durch eine beeindruckende Homogenität der leuchtenden Flächen aus. Die KIT-Forscher gehören zu den wenigen Teams auf der ganzen Welt, die über die entsprechende Herstellungsexpertise verfügen. „Mit den flüssigprozessierten Silizium-Leuchtdioden, welche potenziell ebenso großflächig wie kostengünstig herstellbar sind, betritt die Nanopartikel-Community wirkliches Neuland, deren Potenzial heute nur schwer abzuschätzen ist. Vermutlich aber müssen Lehrbücher über Halbleiterbauteile neu geschrieben werden“, sagt Geoffrey A. Ozin, der derzeit auch als KIT Distinguished Research Fellow am Center for Functional Nanostructures (CFN) des KIT tätig ist.

Ein weiterer Vorteil der SiLEDs ist, dass sie ohne Schwermetalle auskommen. Anders als das von anderen Forschergruppen eingesetzte Cadmiumselenid oder auch Cadmiumsulfid oder Bleisulfid ist Silizium als Ausgangsmaterial für lichtemittiernde Nanopartikel nicht toxisch. Silizium ist außerdem kostengünstig und auf der Erde reichlich verfügbar. Aufgrund der vielen Vorzüge werden die Forscher die SiLEDs in Zusammenarbeit mit weiteren Partnern weiterentwickeln.

Florian Maier-Flaig, Julia Rinck, Moritz Stephan, Tobias Bocksrocker, Michael Bruns, Christian Ku¨bel, Annie K. Powell, Geo?rey A. Ozin, and Uli Lemmer: Multicolor Silicon Light-Emitting Diodes (SiLEDs). In: Nano Letters. DOI: 10.1021/nl3038689

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:

Kosta Schinarakis
PKM – Themenscout
Tel.: +49 721 608 41956
Fax: +49 721 608 43658
E-Mail:schinarakis@kit.edu

Kosta Schinarakis | KIT
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik