Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliches Mottenauge als Lichtfänger – Wasserstoffproduktion mit Sonnenlicht

20.06.2014

Weltweit forschen Wissenschaftler an Solarzellen, die die Photosynthese der Pflanzen nachahmen und aus Sonnenlicht und Wasser synthetische Brennstoffe wie Wasserstoff bilden.

Empa-Forscher haben nun eine solche photoelektrochemische Zelle dem Mottenauge nachempfunden und dadurch die Lichtausbeute drastisch erhöht. Die Zelle besteht aus billigen Grundstoffen: Eisen- und Wolframoxid.


So entsteht die «Mottenaugen-Solarzelle», und so fängt sie das Licht ein.

Empa

Eisenoxid, also Rost, könnte die Solartechnik revolutionieren: Aus dem (meist unerwünschten) Stoff lassen sich Photoelektroden herstellen, die Wasser spalten und dadurch Wasserstoff erzeugen. So wird Sonnen-energie nicht erst in Elektrizität, sondern direkt in einen wertvollen Brennstoff umgewandelt.

Leider hat das Ausgangsmaterial so seine Tücken: Eisenoxid ist zwar unschlagbar billig und absorbiert genau in dem Wellenlängenbereich, in dem die Sonne am meisten Licht aussendet. Doch es leitet elektrischen Strom sehr schlecht und muss daher immer in Form äusserst dünner Filme verarbeitet werden, damit die Wasserspaltung funktioniert. Der Nachteil: Diese dünnen Filme absorbieren zu wenig vom eingestrahlten Sonnenlicht.

Mikrokügelchen fangen das Sonnenlicht ein

Den Empa-Forschern Florent Boudoire und Artur Braun ist es nun gelungen, dieses Problem zu lösen: Eine spezielle Mikrostruktur der Photoelektrode fängt das Licht buchstäblich ein und lässt es nicht mehr heraus. Die Grundlage für diese innovative Struktur bilden winzige Partikel aus Wolframoxid, das wegen seiner satten, gelben Farbe ebenfalls für Photoelektroden benutzt werden kann.

Die gelben Kügelchen werden auf einer Elektrode aufgetragen und dann mit einer hauchdünnen (nanoskaligen) Schicht Eisenoxid überzogen. Fällt von aussen Licht auf die Partikel, wird es in innen mehrfach hin und her reflektiert. Schliesslich ist alles Licht absorbiert, und die gesamte Energie steht für die Spaltung von Wassermolekülen zur Verfügung. Auf diese Weise erzeugt die Photozelle aus Wasser den ökologisch vorteilhaften Brennstoff Wasserstoff.

Im Grunde funktioniere die neu erdachte Mikrostruktur wie das Auge einer Motte, erklärt Florent Boudoire: Die Augen von Nachtfaltern müssen viel Licht einsammeln – und dürfen so wenig wie möglich reflektieren, sonst wird der Falter entdeckt und gefressen. Die Mikrostruktur dieser Augen ist speziell auf die Wellenlänge des Lichts angepasst. Die Photozelle der Empa nutzt den gleichen Effekt.

Um künstliche Mottenaugen aus Metalloxidkügelchen herzustellen, besprühte Florent Boudoire eine Glasscheibe mit einer Suspension aus Kunststoffpartikeln, die in ihrem Inneren jeweils ein Tröpfchen Wolframsalzlösung enthielten. Die Partikel bedecken das Glas wie eine Schicht Murmeln, die dicht aneinander liegen. Dann steckte er das Ganze in den Ofen; der Kunststoff verbrennt, und aus den einzelnen Tröpfchen der Salzlösung entstehen die gewünschten Wolframoxidkügelchen. In einem weiteren Sprühvorgang wird diese Struktur mit Eisensalz überzogen und erneut im Ofen erhitzt.

«Einfangen des Lichts» am Computer simuliert

Nun könnte man das Mixen, Sprühen und Brennen für reine Alchemie halten – für eine Versuchsreihe, die Zufallstreffer erzielt. Doch parallel zu ihren Experimenten haben die Forscher Modellrechnungen am Computer durchgeführt und das «Einfangen des Lichts» in den Kügelchen am Computer simuliert.

Das Ergebnis der Simulationen stimmte mit den Versuchen überein, wie Projektleiter Artur Braun bestätigt. Es ist klar zu erkennen, wie viel das Wolframoxid zum Photostrom beiträgt und wie viel das Eisenoxid. Und: je kleiner die Kügelchen sind, desto mehr Licht landet auf dem Eisenoxid, das die Kügelchen überdeckt. In einem nächsten Schritt wollen die Forscher untersuchen, welche Effekte mehrere übereinander liegende Schichten von Kügelchen auslösen können. Die Arbeit an der Mottenaugen-Solarzelle geht also weiter.

Weitere Informationen:

http://www.empa.ch/plugin/template/empa/3/148616/---/l=1

Rainer Klose | emp

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops