Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kohlenstoffnanoröhrchen aus Vorläufermolekülen züchten

07.08.2014

Kohlenstoffnanoröhrchen aus Vorläufermolekülen züchten Forschern der Empa und des Max-Planck-Instituts für Festkörperforschung ist es erstmals gelungen, einwandige Kohlenstoffnanoröhrchen (CNT) mit einer einzigen, vorbestimmten Struktur – und damit mit identischen elektronischen Eigenschaften – zu «züchten».

Der entscheidende Trick hierbei: Die CNT haben sich aus massgeschneiderten organischen Vorläufermolekülen auf einer Platinoberfläche quasi «von selbst» aufgebaut, wie die Forscher in der neusten Ausgabe der Fachzeitschrift «Nature» berichten.


Planares Vorläufermolekül, Endkappe und wohldefiniertes Kohlenstoffnanoröhrchen – einmal als Strukturmodelle, darüber die entsprechenden Aufnahmen aus dem Rastertunnelmikroskop.

Bildquelle: Empa / Juan Ramon Sanchez Valencia


Auf einer Platinoberfläche faltet sich das planare Kohlenwasserstoff-Molekül zu einer Endkappe. Diese bildet den Keim, aus dem ein Kohlenstoffnanoröhrchen heranwächst (Strukturmodelle).

Bildquelle: Empa / Juan Ramon Sanchez-Valencia

Solche CNT könnten in Zukunft etwa in ultrasensiblen Lichtdetektoren und kleinsten Transistoren zum Einsatz kommen.

Seit 20 Jahren beschäftigt sich nicht nur die Grundlagen- sondern auch die angewandte Forschung intensiv mit Kohlenstoffnanoröhrchen (engl. carbon nanotubes, CNT). Mit ihren ausserordentlichen mechanischen, thermischen und elektronischen Eigenschaften wurden die winzigen Röhrchen mit ihrem wabenförmigen Gitter aus graphitischem Kohlenstoff zum Inbegriff für Nanomaterialien.

Sie könnten dazu verhelfen, elektronische und elektro-optische Bauteile der nächsten Generation noch kleiner als bis anhin zu fertigen und damit noch schnellere Schaltzeiten zu erreichen.

Möglichst sortenrein

Mit einem Durchmesser im Bereich eines Nanometers gelten einwandige CNT (engl. single wall CNT, SWCNT) als Quantenstrukturen; geringste strukturelle Unterschiede etwa im Durchmesser oder in der Ausrichtung des Atomgitters können zu dramatischen Veränderungen der elektronischen Eigenschaften führen: Ein SWCNT kann metallisch sein, während ein strukturell leicht anderes halbleitend ist. Entsprechend gross ist das Interesse an zuverlässigen Methoden, um SWCNT möglichst sortenrein herzustellen.

Entsprechende Konzepte zur Synthese wurden zwar bereits vor gut 15 Jahren formuliert. Doch erst jetzt gelang es Oberflächenphysikern der Empa und Chemikern des Max-Planck-Instituts eine dieser Ideen im Labor auch erfolgreich umzusetzen. In der neuesten Ausgabe der Zeitschrift «Nature» beschreiben sie, wie es ihnen erstmals gelang, strukturell gleichartige SWCNT auf einer Platinoberfläche «wachsen» zu lassen und damit auch deren elektronische Eigenschaften eindeutig zu definieren.

Das Empa-Team um Roman Fasel, Leiter der Empa-Abteilung «nanotech@surfaces» und Titularprofessor am Departement für Chemie und Biochemie der Universität Bern, beschäftigt sich schon seit Längerem damit, «wie sich Moleküle auf einer Oberfläche zu komplexen Nanostrukturen umformen beziehungsweise zusammenfügen lassen».

Durch so genannte Bottom-up-Synthese war es ihnen etwa gelungen, mit definierten Ketten aus «Buckyballs» (kurz gesagt auf Ballform geschrumpfte CNT) und flachen Nanobändern auf Gold gezielt bestimmte Nanostrukturen herzustellen. «Die Herausforderung bestand nun darin, das geeignete Ausgangsmolekül zu finden, das auf einer glatten Oberfläche auch tatsächlich ‹keimen› würde,» so Fasel, dessen Team sich über die Jahre ein breites Know-how auf dem Gebiet der molekularen Selbstorganisation erarbeitet hat. Den Kollegen vom Max-Planck-Institut in Stuttgart gelang es schliesslich, das passende Ausgangsmolekül zu synthetisieren, ein Kohlenwasserstoff aus immerhin 150 Atomen.

Molekulares Origami

Wie geht nun der Prozess konkret vonstatten? Im ersten Schritt muss sich das flache Ausgangsmolekül – ähnlich wie beim Origami – zu einem dreidimensionalen Objekt, dem Keimling, umformen. Dies geschieht auf einer heissen Platinoberfläche (Pt(111)) durch eine katalytische Reaktion, bei der sich, unter Abspaltung von Wasserstoffatomen, an ganz bestimmten Stellen neue Kohlenstoff-Kohlenstoff-Bindungen bilden. Aus dem flachen Molekül «faltet» sich der «Keim»: ein kleines, kuppelartiges Gebilde mit offenem Rand, das auf der Platinoberfläche sitzt. Diese so genannte Endkappe bildet den «Deckel» des wachsenden SWCNT.

In einem zweiten chemischen Prozess lagern sich weitere Kohlenstoffatome an, die der katalytischen Zersetzung von Ethylen (C2H4) auf der Platinoberfläche entstammen. Sie setzen sich auf den offenen Rand zwischen Endkappe und Platinfläche und heben die Kappe immer weiter an; das Röhrchen wächst langsam in die Höhe. Dabei bestimmt ausschliesslich der Keim dessen atomare Struktur. Diesen Umstand konnten die Forscher durch eine Analyse der Schwingungsmodi der SWCNT sowie Messungen im Rastertunnelmikroskop (STM) zeigen. Weitere Untersuchungen im neuen Raster-Heliumionen-Mikroskop (SHIM) an der Empa zeigen, dass die entstandenen SWCNT über 300 Nanometer lang werden.

Es klappt!

Die Forscher haben damit bewiesen, dass mit massgeschneiderten molekularen «Keimen» das Wachstum (und damit die Struktur) langer SWCNT eindeutig vorgegeben werden kann. Bei den in dieser Studie synthetisierten SWCNT handelt es sich um spiegelbildlich symmetrische Gebilde. Je nachdem, wie sich das wabenartige Atomgitter aus dem Anfangsmolekül ableitet («gerade» oder «schräg» bezüglich der CNT-Achse), können aber auch nicht-spiegelsymmetrische, schraubenartig gewundene, das heisst rechts- oder links-drehende Röhrchen entstehen. Und genau diese Struktur bestimmt dann auch, welche elektronischen, thermo-elektrischen und optischen Eigenschaften das Material besitzt. Die Forscher können also prinzipiell durch die Wahl des Ausgangsmoleküls gezielt Materialien mit unterschiedlichen Eigenschaften herstellen.

Als nächstes wollen Fasel und seine Kollegen noch besser verstehen, wie SWCNT eine Oberfläche besiedeln. Auch wenn schon jetzt weit mehr als 100 Millionen Nanoröhrchen pro Quadratzentimeter auf der Platinoberfläche wachsen, entstehen doch nur aus einem vergleichsweise kleinen Teil der Keime auch tatsächlich «ausgewachsene» Nanoröhrchen. Stellt sich die Frage, welche Prozesse dafür verantwortlich sind und wie sich die Ausbeute erhöhen lässt.

James M. Tour schreibt in Nature's "News & Views" über den Beitrag der Empa: "(...) Sanchez-Valencia and colleagues' work represents a stellar breakthrough in the synthesis of SWCNTs. To those who have worked in this field for the past two decades, it is humbling to think that the selective growth of these diminutive structures has taken so long. But it is comforting to see it done so definitively." Mehr lesen Sie hier: Materials chemistry: Seeds of selective nanotube growth. Nature, 512, 30–31, 7 August 2014, doi:10.1038/512030a
http://www.nature.com/nature/journal/v512/n7512/full/512030a.html

Literaturhinweis
Controlled Synthesis of Single-Chirality Carbon Nanotubes», Juan Ramon Sanchez-Valencia, Thomas Dienel, Oliver Gröning, Ivan Shorubalko, Andreas Mueller, Martin Jansen, Konstantin Amsharov, Pascal Ruffieux, & Roman Fasel, Nature 512, 61–64 (07 August 2014): http://dx.doi.org/10.1038/nature13607

Flickr-Bildstream
https://flic.kr/s/aHsk1rFNDy

Weitere Informationen
Prof. Dr. Roman Fasel, Empa, nanotech@surfaces, Tel. +41 58 765 43 48, roman.fasel@empa.ch
Dr. Oliver Gröning, Empa, nanotech@surfaces, Tel. +41 58 765 46 69, oliver.groening@empa.ch
Prof. Dr. Martin Jansen, Direktor em., Max Planck Institut (MPI) für Festkörperforschung Stuttgart,
Tel. +49 228 929 82 265, m.jansen@fkf.mpg.de
Dr. habil. Konstantin Amsharov, (ehem. Max Planck Institute for Solid State Research, Stuttgart) Universität Erlangen-Nürnberg, Institut für Organische Chemie II, Tel. +49 9131 85 26 864, konstantin.amsharov@fau.de

Weitere Informationen:

http://www.empa.ch/plugin/template/empa/3/149809/---/l=1
https://flic.kr/s/aHsk1rFNDy

Martina Peter | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht Aufgewärmt am Start
05.12.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Goldmedaille für die praktischen Ergebnisse der Forschungsarbeit bei Nutricard

11.12.2017 | Unternehmensmeldung

Nachwuchs knackt Nüsse - Azubis der Friedhelm Loh Group für Projekte prämiert

11.12.2017 | Unternehmensmeldung

Mit 3D-Zellkulturen gegen Krebsresistenzen

11.12.2017 | Medizin Gesundheit