Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ionen beim Wellenreiten

16.06.2015

Die Leistungsfähigkeit von für die Industrie wichtigen ionenleitenden Keramikmembranen hängt stark davon ab, wie diese verspannt und gewellt sind. Dies zeigten ETH-Materialwissenschaftler auf. Die Forschenden können nun erstmals deren Wellenmuster und damit deren physikalische Eigenschaften gezielt verändern, was neue technische Anwendungen solcher Membranen ermöglicht.

«Ionen sind die neuen Elektronen, die Ionik die Elektronik der Zukunft», sagt Jennifer Rupp, Professorin für Elektrochemische Materialien an der ETH Zürich und bringt damit ihr Forschungsgebiet auf den Punkt. Rupp stellt mit ihrer Gruppe Keramikmaterialien her, welche geladene Atome (Ionen) wie zum Beispiel Sauerstoff- oder Lithium-Ionen sehr schnell leiten können.


Die ETH-Wissenschaftler konstruierten freistehende Keramikmembranen für sogenannte Mikro-Energiewandler. Die Art und Weise, wie die Membranen gewellt sind, beeinflusst ihre Eigenschaften. (Illustration: Shi Y et al. Nature Materials 2015)

Bereits heute werden die elektrochemischen Eigenschaften dieser Materialien genutzt, etwa in Lambdasonden von Autokatalysatoren oder in Festoxidbrennstoffzellen. Und die ETH-Professorin ist davon überzeugt, dass die industrielle Bedeutung dieser Materialien stark zunehmen wird – etwa für Gassensoren, für neue Klassen von Datenspeichern und Computer-Schaltkreisen oder zur Umwandlung von chemischer in elektrische Energie und umgekehrt.

Eine der derzeit wichtigsten Forschungsfragen in ihrem Gebiet sei, wie man diese in der Regel als dünne Membran vorliegenden Materialien optimieren könne, damit sich in ihnen die Ionen schneller bewegten, so Rupp. In einer soeben im Fachmagazin «Nature Materials» veröffentlichten Studie haben mehrere Doktoranden aus ihrer Gruppe aufgezeigt, dass der Ionentransport sehr stark von der Art und Weise abhängt, wie diese Membranen verspannt sind. Auch ist es ihnen gelungen, die Verspannung der Membranen gezielt zu steuern, was für die Entwicklung künftiger technischer Anwendugen bedeutend ist.

Freistehende Membran

Für ihre Studie arbeiteten die Wissenschaftler mit einer sehr dünnen Keramik-Schicht, konkret mit Gadolinium-dotiertem Ceroxid. «Das ist einer der in der Industrie am häufigsten verwendeten Ionenleiter», erklärt ETH-Doktorand Sebastian Schweiger.

In bisherigen Forschungsarbeiten auf dem Gebiet ist das Material meist als dünner Film auf einem Silizium-Trägermaterial untersucht worden. Yanuo Shi, ein weiterer Doktorand in Rupps Gruppe und Erstautor der nun veröffentlichten Arbeit, erstellte aus dem Material jedoch eine freistehende Membran, indem er das Trägermaterial unter der dünnen Keramikschicht wegätzte.

Diese blieb danach nicht etwa flach, sondern wellte sich, weil sich die inneren Spannungen in der Schicht beim Wegätzen veränderten. Auf kleinen Stücken solcher Membranen befestige Shi Mikroelektroden und stellte so winzige Bauelemente her, mit welchen man aus Wasserstoff oder organischen Verbindungen sowie Sauerstoff aus der Luft Strom erzeugen kann.

Elektroden beeinflussen Wellenmuster

Dabei konnten die Forschenden zeigen, dass die Anordnung der Elektroden das Wellenmuster der Keramikmembran sowie die Materialstruktur auf Ebene der Atome beeinflusst. Dies wiederum beeinflusst sehr stark die Leitfähigkeit der Membran für Sauerstoff-Ionen. Es gelang den Wissenschaftlern, diesen Effekt im Detail zu beschreiben. «Damit ist es uns nun erstmals möglich, Wellenmuster und Ionenleitfähigkeit solcher Membranen gezielt zu steuern», so Alexander Bork, ein weiterer an der Arbeit beteiligter Doktorand.

In den vergangenen Jahrzehnten haben Wissenschaftler vor allem versucht, die Leitfähigkeit solcher Ionenleiter zu verändern, indem sie das Material bewusst mit bestimmten Fremdatomen «verunreinigten» – fachsprachlich: dotierten. Die ETH-Forschenden zeigten nun, dass sich die Leitfähigkeit über die Steuerung des Wellenmusters und der Verspannung sehr viel stärker beeinflussen lässt als über die Dotierung.

«Schon in früheren Experimenten ist es Wissenschaftlern aufgefallen, dass die Stromerzeugung in Festoxidbrennstoffzellen je nach Aufbau solcher Zellen sehr stark variiert. Wir haben nun im Experiment mit der Verspannung des Ionenleiters eine mögliche Erklärung für dieses Verhalten gefunden», sagt Rupp. Es sei nun möglich, ionenleitende Membranen gezielt zu optimieren. Dies fördere die Entwicklung künftiger Gassensoren, ionenbasierten Datenspeichern sowie sogenannter Mikro-Energiewandlern wie beispielsweise Brennstoffzellen – und womöglich einer ganzen Reihe noch unbekannter Anwendungen in der zukunftsträchtigen Ionik.

Literaturhinweis

Shi Y, Bork AH, Schweiger S and Rupp JLM: The effect of mechanical twisting on oxygen ionic transport in solid-state energy conversion membranes. Nature Materials, 15. Juni 2015, doi: 10.1038/nmat4278 [http://dx.doi.org/10.1038/nmat4278]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/06/ionen-beim...

Fabio Bergamin | ETH Zürich

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften