Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hyperspectral Imaging - neue Möglichkeiten in der optischen Spektroskopie

13.07.2012
Was haben Gewebeuntersuchung, Schädlingsbefall, Schichtdickenbestimmung, Papierherstellung und Müllsortierung gemein?
Dass die für den Anwender relevanten Informationen im vom Objekt reflektierten Licht bereits enthalten sind! Man muss diese Informationen „nur noch“ ortsaufgelöst dekodieren, schon weiß der Mediziner, ob und wo sich bei der Gewebeprobe ein Tumor befindet, der Forstwirt, in welchem Jagen wie viel Schädlingsmittel versprüht werden muss, der Ingenieur, welche Qualität die Schicht bzw. die Papierbahn aufweist. Der Schlüssel dazu ist immer wieder die ortsaufgelöste Dechiffrierung der im Licht enthaltenen Informationen.

Diese für die Spektroskopie neuen, innovativen Einsatzgebiete werden durch die Technik des „Hyperspectral Imaging“ (HSI) eröffnet, eine Art Zeilenkamera, mit der sowohl im sichtbaren als auch im nahen Infrarotbereich durch Bewegung des Objektes oder der Kamera vollständig spektral aufgelöste Bilder erzeugt werden können. Je nach Arbeitsabstand und verwendetem Objektiv können km2 oder aber µm2 große Bereiche untersucht werden.

Diese neue bildgebende spektroskopische Technik ist seit kurzem am Dresdner Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS sowohl für einen Spektralbereich von 400 – 1000 nm (VIS) als auch für den Bereich von 1000 - 2500 nm (NIR) verfügbar. Neben den Informationen zu Farbe, Fluoreszenz und Absorption im Bereich des sichtbaren Lichts können aus dem Bereich des nahen Infrarots Informationen zur chemischen Zusammensetzung aber auch zur Topologie des Untersuchungsobjektes gewonnen werden.

Beide Systeme können mit einer Aufnahmefrequenz von bis zu 200 Hz betrieben werden, so dass sich neben einer hohen Ortsauflösung auch eine hohe zeitliche Abfolge in der Aufnahme der Spektren ergibt. Optional kann der VIS-Bereich auch mit einer Faserkopplung (35 Fasern) betrieben werden. „Die Herausforderung besteht darin, aus der gigantischen Menge der erfassten Daten die für die jeweilige Aufgabe wichtige Information zu extrahieren. Aber hier können wir mit Hilfe sogenannter chemometrisch-statistischer Modelle und Tools unser Know-How maßgeschneidert anbieten.“ so Dr. Wulf Grählert, Leiter der Gruppe Prozess-Monitoring.

Im Gegensatz zu bisherigen Monitoring-Lösungen in industriellen Prozessen kann mit Hilfe eines HSI-Systems die Überwachung nicht nur punktuell erfolgen, sondern es kann der gesamte Prozess erfasst und ausgewertet werden. Einige erste Beispiele gibt es bereits in der automatisierten Sortierung (Gesteine, Polymere, Glas), der Geländeexploration (Vegetation) oder auch der Lebensmittelkontrolle. Die Forscher des Fraunhofer IWS planen bereits weitere Projekte zur flächigen Erfassung von Verunreinigungen oder Qualifizierung von Beschichtungen (z. B. auf Stahl) sowie zur Gasdetektion und Anlagenüberwachung (z. B. Lecksuche). Dem Ideenreichtum sind an dieser Stelle nur wenige Grenzen gesetzt.

Ihre Ansprechpartner für weitere Informationen:
Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden
01277 Dresden, Winterbergstr. 28
Dr. Wulf Grählert
Telefon: (0351) 83391 3406
Telefax: (0351) 83391 3300
E-Mail: wulf.graehlert@iws.fraunhofer.de
Presse und Öffentlichkeitsarbeit
Dr. Ralf Jäckel
Telefon: (0351) 83391 3444
Telefax: (0351) 83391 3300
E-mail: ralf.jaeckel@iws.fraunhofer.de

Dr. Ralf Jaeckel | Fraunhofer-Institut
Weitere Informationen:
http://www.iws.fraunhofer.de/de/presseundmedien/presseinformationen.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics