Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hamburger Wissenschaftler entwickeln Nanomaterial mit steuerbaren optischen Eigenschaften

10.03.2017

Wissenschaftlerinnen und Wissenschaftler der Technischen Universität Hamburg (TUHH) und des Helmholtz-Zentrum Geesthacht (HZG) haben ein neuartiges optisches Nanomaterial auf der Basis von nanoporösem Gold hergestellt, das es ermöglicht, die optische Transmission –also den Durchgang optischer Strahlung- durch Anlegen von elektrischen Spannungen um bis zu 30 Prozent zu verändern. Die Veränderung ist sensationell groß, wenn man bedenkt, dass die Schichtdicke des Nanomaterials nur 200 Nanometer beträgt – das ist nur etwa ein fünfhundertstel des Durchmessers eines menschlichen Haares.

Obwohl es aus Metall besteht, reflektiert das neue Nanomaterial optische Strahlung nicht so, wie das von einem normalen Metallspiegel bekannt ist. Durch die nanoskalige Porenstruktur entsteht ein sogenanntes plasmonisch-optisches Metamaterial, das sich im Sichtbaren wie ein absorbierendes nichtmetallisches Material verhält und erst im nahen Infrarot -also bei längeren Wellenlängen- seinen typischen metallischen Charakter mit der damit einhergehenden Reflexion zeigt. Über die Dichte dieser Porenstruktur lässt sich festlegen, in welchem Wellenlängenbereich das Nanomaterial absorbiert und wo es reflektiert.


Links: Elektronenmikroskopische Aufnahme eines nanoporösen Goldnetzwerks. Erkennbar sind die von Hohlräumen umgebenen nanoskaligen Goldstege.

Rechts: Breitbandige Änderung der optischen Transmission um bis zu 30 Prozent bei Anlegen einer elektrischen Spannung von ca. 1 Volt (hellblaue Kurve: -0,9 V, mittelblaue Kurve: -0,5 V, dunkelblaue Kurve: 0,5 V, schwarze Kurve: 0,9 V)

(Foto: TUHH)

Hier im konkreten Fall bestehen 85 Prozent des gesamten Volumens aus Poren, die von nur 10 Nanometer dicken Gold-Stegen durchzogen sind. Es entsteht ein schwammartiges Material mit einer sehr großen inneren Oberfläche. Ein Würfel aus diesem nanoporösen Gold mit einer Kantenlänge von nur 4 cm hätte die innere Oberfläche eines Fußballfeldes.

In diese Poren haben die Hamburger Wissenschaftler nun einen Elektrolyten auf Wasserbasis eingefüllt, der eine von außen angelegte elektrische Spannung mit den dünnen Goldstegen verbindet. Normalerweise ist die Dichte der Elektronen und damit auch die optischen Eigenschaften von Metallen durch eine angelegte Spannung kaum zu ändern.

Die enorm große innere Oberfläche des Nanomaterials erlaubt es aber, durch Anheben und Absenken der Spannung von nur ca. 1 Volt die Dichte der Elektronen in den miteinander verbundenen metallischen Stegen um bis zu 8 Prozent zu variieren. Damit lässt sich die optische Transmission breitbandig und reversibel um bis zu 30 Prozent ändern – es entsteht ein einstellbarer teildurchlässiger Spiegel.

Das neu entwickelte Nanomaterial birgt großes Potenzial, um mittels der Absorption von Sonnenlicht Wasser in Sauerstoff und Wasserstoff aufzuspalten. Der ohne menschengemachte Energiezufuhr erzeugte Wasserstoff ist der emissionsfreie regenerative Brennstoff erster Wahl im Hinblick auf die notwendige Umstellung der Energieversorgung der Industriegesellschaften.

In einer Zeit knapper werdender fossiler Brennstoffe, angesichts des ungelösten Problems des Klimawandels und inmitten der aktuellen Diskussion um gesundheitsschädliche Feinstaub- und Stickoxidemissionen durch Heizungen und Verbrennungsmotoren im Straßenverkehr wollen die Hamburger Wissenschaftler einen substanziellen Beitrag bei der Schaffung der erforderlichen wissenschaftlichen technischen Grundlagen für eine umweltfreundliche Energieversorgung leisten.

Die Forschungsarbeiten wurden im Rahmen der bereits seit vielen Jahren sehr erfolgreichen Kooperation der Technischen Universität Hamburg (TUHH) und dem Helmholtz-Zentrum Geesthacht (HZG) durchgeführt. Diese fruchtbare Kooperation drückt sich insbesondere in dem gemeinsam von TUHH und HZG seit 2012 betriebenen und von der Deutschen Forschungsgemeinschaft (DFG) geförderten Sonderforschungsbereich 986 „Maßgeschneiderte Multiskalige Materialsysteme – M³“ und in dem im Großraum Hamburg die materialwissenschaft¬lichen Kompetenzen bündelnden Zentrum für Hochleistungsmaterialien (ZHM) aus, das zu diesem Zweck im Jahre 2015 von TUHH und HZG sowie den beteiligten Landesregierungen Hamburgs und Schleswig-Holsteins gegründet wurde.

„Erst die Erarbeitung der an der TUHH und am HZG komplementären Fähigkeiten auf den Gebieten der Photonik und der nanoporösen Metalle sowie die hervorragende Kooperation der beteiligten Wissenschaftler hat uns in die Lage versetzt, die Bandbreite der anstehenden Aufgaben zu bewältigen - von der theoretischen Beschreibung über die elektromagnetische Simulation bis hin zur Herstellung der nanoporösen Metalle und zu deren optischer Charakterisierung.“, sagt Professor Manfred Eich, Co-Sprecher des SFB 986, Leiter des TUHH-Instituts für Optische und Elektronische Materialien der TUHH und Leiter einer Arbeitsgruppe am HZG, die sich mit Nanophotonischen Strukturen für die photoelektrochemische Wasserstoffgewinnung befasst.

Publiziert wird die Arbeit am 09. März 2016 in „Nature Scientific Reports“, einer der weltweit wichtigsten Fachzeitschriften für fachübergreifende, wissenschaftliche Forschungsarbeiten.

Publikation
" Electrochemical Tuning of the Optical Properties of Nanoporous Gold" by Dirk Jalas, Li Hua Shao, Rashmi Canchi, Toshiya Okuma, Slawa Lang, Alexander Petrov, Jörg Weissmüller, and Manfred Eich in Nature Scientific Reports.

Der Artikel erscheint am 09. März 2017 unter www.nature.com/articles/srep44139

Weitere Informationen:
Prof. Dr. Manfred Eich
Technische Universität Hamburg-Harburg (TUHH)
Institut für Optische und Elektronische Materialien
Eißendorfer Straße 38, D-21073 Hamburg
und
Institut für Werkstoffforschung, Helmholtz-Zentrum Geesthacht,
Max-Planck-Strasse 1, Geesthacht, D-21502, Germany

Tel +49 40 42878 3147
E-Mail: m.eich@tuhh.de

www.tuhh.de/alt/oem/home.html

Prof. Dr. Jörg Weißmüller
Technische Universität Hamburg-Harburg (TUHH)
Institut für Werkstoffphysik und -technologie
Eißendorfer Straße 42, D-21073 Hamburg
und
Institut für Werkstoffforschung, Helmholtz-Zentrum Geesthacht,
Max-Planck-Strasse 1, Geesthacht, D-21502, Germany

Tel +49 40 42878 30 35
E-Mail: weissmueller@tuhh.de

www.tuhh.de/wp/index.de.html 

Jasmine Ait-Djoudi | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tuhh.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik