Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein guter Draht für die Nanoelektronik

05.04.2013
Silicium-Nanodrähte werden während ihres Wachstums mit unerwartet viel Aluminium dotiert, sodass ihre Leitfähigkeit steigt

Die Nanoelektronik kommt wieder einen Schritt voran. Ein internationales Team, an dem auch Forscher des Max-Planck-Instituts für Mikrostrukturphysik in Halle beteiligt waren, hat einen Effekt entdeckt, mit dem sich besonders leitfähige Silicium-Nanodrähte erzeugen lassen. Solche Nanodrähte werden auf elegante Weise mit Aluminium als Katalysator gezüchtet.


Im Atomsonden-Tomografen offenbart sich die atomare Struktur des Materials: Rot sind die repräsentativen Positionen der Aluminiumatome dargestellt und blau diejenigen der Siliciumatome. Eine Analyse der Daten zeigt die sehr hohe Konzentration von Aluminium im Silicium und seine gleichmäßige Verteilung. Aus experimentellen Gründen wurde der Nanodraht für die Untersuchung mit einer Nickelschicht (grün) überzogen. © Nature / Northwestern University Illinois


In der Wachstumszone eines Nanodrahtes: Ein Aluminiumtropfen nimmt an seiner Oberfläche Silicium auf, das in der Umgebung in Form von Silan enthalten ist. Das Silicium wandert zur Tropfenunterseite, wo es sich schichtweise abscheidet. In dem Siliciumdraht, der sich so bildet, wird dabei deutlich mehr Aluminium eingelagert als theoretisch zu erwarten war. Im Bild eines hochauflösenden Transmissions- Elektronenmikroskops ist die Grenze zwischen Aluminium und Silicium deutlich zu erkennen.
© Nature / MPI für Mikrostrukturphysik

Wie die Wissenschaftler nun festgestellt haben, nimmt das Silicium dabei deutlich mehr Aluminium auf, als sie erwartet hatten. Den Eigenschaften der Drähte kommt das zugute, weil der hohe Aluminium-Anteil – in der Halbleitertechnik spricht man von einer Dotierung – deren Leitfähigkeit verbessert. Der Effekt könnte sich auch nutzen lassen, um andere hochdotierte Nanomaterialien zu erzeugen.

Mit völlig reinem Silicium würde ein Chip kaum so funktionieren, wie wir ihn kennen. Erst wenn Fremdatome durch zusätzliche Elektronen oder positive Ladungen die Zahl der Ladungsträger in dem Halbleiter erhöhen, reicht seine Leitfähigkeit, damit in Transistoren Strom fließt. Daher dotiert die Halbleiterindustrie Silicium und andere Halbleiter: Sie mischt eine sorgfältig bemessene Menge fremder Atome in die Materialien.

Wenn sie ihre Bauelemente künftig in den Nanobereich verkleinert, kommt ihr dabei vielleicht ein Effekt zuhilfe, den nun ein Team von Forschern des Max-Planck-Instituts für Mikrostrukturphysik, der École Polytechnique im kanadischen Montréal sowie der Northwestern University im US-amerikanischen Illinois entdeckt hat. Bei der gängigen Methode, mit der Nanodrähte hergestellt werden, wird das Material nämlich en passant mit Aluminium dotiert.

„Dabei nimmt das Silicium sogar 10000 Mal mehr Aluminium auf als die Gesetze der Thermodynamik erlauben“, sagt Eckhard Pippel, einer der beteiligten Forscher des Max-Planck-Instituts für Mikrostrukturphysik. Die Thermodynamik regelt unter anderem, welche Menge einer Substanz sich in einer anderen löst, und das gilt für Legierungen verschiedener Metalle genauso wie für Flüssigkeiten. Demnach dürfte in einem Silicium-Kristall nicht einmal ein Millionstel Teil der Atome durch Aluminium ersetzt sein. Tatsächlich stellten die Wissenschaftler aber fest, dass der Aluminium-Gehalt der Siliciumdrähte bei etwa vier Prozent liegt. Und die Aluminiumatome verteilen sich völlig gleichmäßig in dem Material. Das fanden die Forscher anhand einer Atomsonden-Tomografie heraus, die in nanoskopischen Proben die Art und Position jedes einzelnen Atoms enthüllt.

Die Nanodrähte können den chemischen Idealzustand nicht erreichen

„An dem Tag als ich die Ergebnisse sah, habe ich einen Luftsprung gemacht“, sagt Oussama Moutanabbir, der einen Großteil der Untersuchungen in seiner Zeit am Max-Planck-Institut für Mikrostrukturphysik machte und jetzt an der École Polytechnique in Montréal forscht. „Die Daten waren für uns zum einen wegen der hohen Konzentration überraschend, zum anderen weil das Aluminium keine Cluster im Silicium bildet.“ In Form von Clustern, also kleiner Aluminiumansammlungen, wäre der Aluminiumgehalt als Dotierung wertlos. Denn nur für gleichmäßig verteilte Aluminiumatome wird die Zahl der Ladungsträger im Silicium erhöht, was für elektronische Anwendungen wichtig ist.
Um die unerwartet starke Einlagerung von Aluminium kontrollieren und somit für mögliche technische Anwendungen ausnutzen zu können, suchten die Forscher nach einer Erklärung dafür. „Dass die Konzentration so stark von den Vorhersagen der Thermodynamik abweicht, beruht auf einem kinetischen Effekt“, sagt Stephan Senz, einer der beteiligten Forscher des Max-Planck-Instituts für Mikrostrukturphysik. Die Thermodynamik beschreibt stets einen idealen Gleichgewichtszustand der Natur, in dem chemische Verbindungen nach einem möglichst niedrigen Energieinhalt streben und sich nicht mehr verändern wollen. Für Kristalle heißt das: Sie sollen möglichst wenig Fehler und Fremdatome enthalten. Die Kinetik muss dagegen immer herhalten, wenn dieser Idealzustand nicht erreicht wird. Dann läuft irgendeiner der Prozesse, durch die sich ein Material bildet, zu schnell oder zu langsam ab, als dass der ideale Gleichgewichtszustand erreicht werden kann. Genau das ist bei Entstehung von Silicium-Nanodrähten der Fall.

Nanodrähte aus Silicium züchten Forscher, indem sie zunächst Nanoinseln aus Aluminium auf einer Silicium-Oberfläche verteilen. Aluminium schmilzt bei einer niedrigeren Temperatur als Silicium. Und eben darauf kommt es an. Denn die mit den Aluminiuminseln gesprenkelte Siliciumscheibe platzieren die Forscher nun in einer Kammer, in die sie zum einen die leicht flüchtige Silicium-Verbindung Silan strömen lassen und die sie zum anderen gerade so hoch heizen, dass Aluminium schmilzt, nicht aber Silicium. Unter diesen Bedingungen wandelt sich das Silan in Silicium um und löst sich in den Aluminiumtröpfchen.

Eine mögliche Route zu exotischen chemischen Verbindungen

Sobald der Tropfen mit Silicium gesättigt ist, hört er aber keineswegs auf, Silicium aufzunehmen. Vielmehr verleibt er sich an seiner Oberfläche weiter Silicium ein, scheidet es unter sich auf dem Silicium-Untergrund aber wieder aus. Ähnlich wie ein Tintenstrahldrucker eine schwarze Fläche linienweise druckt, ordnen sich die Atome dabei Reihe für Reihe zu einer Siliciumschicht an. Sobald eine Lage unter dem Tropfen fertig ist, setzt sich die nächste zusammen. Allmählich wächst auf diese Weise unter jedem Aluminiumtröpfchen ein Nanodraht in die Höhe.

Um zu verstehen, warum dabei mehr Aluminium im Siliciumdraht landet als eigentlich zulässig, entwickelten die Forscher ein Modell, wie schnell der Prozess auf atomarer Ebene abläuft. „Entscheidend ist die Zeit, die Atome haben, um zwischen dem wachsenden Draht und dem Aluminiumtropfen hin und her zu springen“, erklärt Ousamma Moutanabbir. Ist die Zeit lang, sortieren sich die Atome solange, bis das chemische Gleichgewicht erreicht wird. Doch dafür reicht sie offensichtlich nicht. Vielmehr endet die Frist für den Atomtausch, sobald eine Reihe von Siliciumatomen komplettiert wurde. „Ein Aluminiumatom, das vorher eingebaut wurde, bleibt endgültig gefangen“, sagt Moutanabbir. „Bislang dachte man, dass die Atome solange zwischen Aluminumtropfen und Siliciumdraht getauscht werden können, bis eine ganze Siliciumlage fertig ist.“

Da die Forscher den Prozess nun aufgeklärt haben, sollte er sich nutzen lassen, um gezielt Nanodrähte zu dotieren. „Wir vermuten, dass der Effekt auch bei anderen Kombinationen von Halbleitern und Metallen auftritt“, sagt Moutanabbir. „Spannend finde ich aber auch, dass das Wachstum der Nanodrähte fernab vom chemischen Gleichgewicht stattfindet.“ Der Forscher hofft daher, dass sich in ähnlichen Prozessen Nanomaterialien mit exotischen chemischen Zusammensetzungen erzeugen lassen, die im thermodynamischen Gleichgewichtszustand unmöglich sind.

Ansprechpartner

Dr. Eckhard Pippel,
Max-Planck-Institut für Mikrostrukturphysik, Halle/Saale
Telefon: +49 345 5582-924
E-Mail: epip@­mpi-halle.de
Prof. Oussama Moutanabbir, Ph.D.
École Polytechnique de Montréal
Telefon: +1 514 340-2587
E-Mail: oussama.moutanabbir@­polymtl.ca
Originalpublikation
Oussama Moutanabbir, Dieter Isheim, Horst Blumtritt, Stephan Senz, Eckhard Pippel und David N. Seidman
Colossal injection of catalyst atoms into silicon nanowires
Nature, 4. April 2013; doi:10.1038/nature11999

Dr. Eckhard Pippel | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de
http://www.mpg.de/7081405/nanodraht_dotierung_nanoelektronik?filter_order=L

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beschichtung lässt Muscheln abrutschen
18.08.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik