Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Günstige Detektoren für Gammastrahlung

20.09.2016

Ein Forschungsteam der Empa und der ETH Zürich hat Einkristalle aus Blei-Halogenid-Perowskiten entwickelt, die radioaktive Strahlung sehr exakt messen können. Erste Experimente haben gezeigt, dass solche Kristalle, die aus wässrigen Lösungen oder günstigen Lösungsmitteln hergestellt werden können, ebenso gut funktionieren wie die bisher gebräuchlichen Halbleiter aus Cadmiumtellurid, deren Herstellung wesentlich aufwändiger ist. Die Entdeckung könnte den Preis vieler Radio-Detektoren deutlich senken – etwa bei Scannern im Sicherheitsbereich, bei tragbaren Dosimetern in Kraftwerken und bei Messgeräten in der medizinischen Diagnostik.

Wenn instabile Isotope zerfallen, entstehen fast immer Gammastrahlen. Um radioaktive Substanzen zu erkennen, braucht es also Gamma-Detektoren, die günstig und hochempfindlich sind und bei Raumtemperatur arbeiten. Geeignete Substanzen zu finden, ist nicht ganz einfach, wie Maksym V. Kovalenko, Professor an der ETH Zürich und Forschungsgruppenleiter an der Empa erläutert: Der gesuchte Kristall, der bei Raumtemperatur Gammastrahlen erkennt, muss eine hohe elektronische Qualität besitzen.


Ein Einkristall

Empa

Das heisst, die Ladungsträger im Kristall müssen äusserst mobil sein und eine lange Lebensdauer besitzen, um das Signal in Form eines elektrischen Impulses zuverlässig weiterzuleiten. Ausserdem muss der Kristall aus schweren Elementen bestehen, damit die energiereiche Gammastrahlung überhaupt eingefangen werden kann. Last but not least muss es möglich sein, aus dem gewünschten Stoff grosse Einkristalle wachsen zu lassen, die unempfindlich gegen Bruch und Temperaturschwankungen sein müssen.

Klassische Becherglas-Chemie

Bisher war vor allem Cadmiumtellurid (CdTe) für diese Eigenschaften bekannt. Doch der Stoff, aus dem auch Dünnschicht-Solarzellen produziert werden, ist nicht wasserlöslich und schmilzt erst bei über 1000 Grad Celsius. Die Herstellung von Detektor-Kristallen ist daher aufwändig und teuer. Kovalenko und seinem Forscherteam ist es nun gelungen, Halbleiterkristalle einer anderen Stoffklasse (Blei-Halogen-Perowskite) in klassischer Becherglas-Chemie herzustellen. Die hochempfindlichen Detektorkristalle können Gammastrahlen sichtbar machen, kosten jedoch nur wenige Schweizer Franken pro Kristall, wie die Forscher vor kurzem in der Fachzeitschrift „Nature Photonics“ berichteten.

Eine mögliche Anwendung wäre ein Mini-Geigerzähler, der an Smartphones angeschlossen werden kann. So könnten Menschen in radioaktiv verseuchten Gebieten zum Beispiel jedes ihrer Lebensmittel einzeln auf Radioaktivität testen.

Anwendungen in der Gehirndiagnostik

Ein weiteres mögliches Anwendungsgebiet der neuen Kristalle ist die Diagnostik von Stoffwechselproblemen im Gehirn. Störungen an Dopamin-Rezeptoren können viele Folgen haben: Parkinson, Schizophrenie, Hyperaktivität (ADHS), soziale Angststörungen oder Drogen- und Alkoholsucht. Diagnostiziert werden solche Störungen, indem Patienten radioaktive Tracer-Substanzen verabreicht werden, die in der Magnetresonanztomographie (MRI) Hirnaktivitäten sichtbar machen. Das Verabreichen radioaktiver Substanzen ist nicht ungefährlich: Ist die Substanz unrein, drohen Gesundheitsschäden. Das Überprüfen der Reinheit muss jedoch sehr schnell geschehen, weil die Tracer-Substanz eine geringe Halbwertzeit hat, also rasch zerfällt.

Um die „Fähigkeiten“ der Blei-Halogen-Perowskite zu demonstrieren, hat Kovalenkos Team den neuen Einkristall-Detektor für die Isotopenreinheitskontrolle von 18F-Fallyprid eingesetzt, eine Tracer-Substanz, die klinisch in Studien über Dopamin-Rezeptoren benutzt wird. 18F-Fallyprid ist radioaktiv und hat eine Halbwertszeit von 110 Minuten – es bleibt also zwischen Herstellung und Injektion nur wenig Zeit, die Substanz auf ihre radiochemische Reinheit zu untersuchen.

Bisher werden die Messungen in einem aufwändigen, zweistufigen Prozess durchgeführt: Zuerst wird die Substanz mit dem Hochleistungsflüssigkeitschromatographie-Verfahren getrennt; in einem zweiten Schritt wird die Radioaktivität mit einem Detektor gemessen. Mit dem neuen Einkristall liess sich dieser zweistufige Prozess erfolgreich auf einen einzigen, einfachen Schritt reduzieren. Der Kristall muss lediglich vor die Tracer-Substanz gehalten werden, dann können die Ergebnisse auf dem angeschlossenen Messgerät abgelesen werden.

Weitere Informationen:

http://www.empa.ch/web/s604/gamma-radiation-detector

Rainer Klose | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise