Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grüne Woche 2015: Karosserie aus Baumwolle, Hanf und Holz

05.01.2015

Carbon- und Glasfasern verstärken Kunststoffe so, dass sie für den Karosseriebau taugen. Aber auch in natürlichen Fasern – gewonnen aus Hanf, Baumwolle oder Holz – steckt diesbezüglich viel Potenzial. Kombiniert man biobasierte Textil- und Carbonfasern, erhält man extrem leichte und dennoch sehr stabile Bauteile.

Leichtbau ist ein wichtiges Thema im Automobilbau, ebenso wie in der Luft- und Raumfahrt. Autobauer setzen heute zunehmend auf faserverstärkte Kunststoffe. Die Fasern, die in die Kunststoffmatrix eingebettet werden, geben dem Material zusätzliche Festigkeit. Welches Material man dabei verwendet, hängt von der späteren Anwendung ab.

So findet man bei der Formel 1 vor allem Carbonfasern. Ein Manko ist jedoch ihr hoher Preis, auch ihre Verarbeitung ist schwierig. Dies sind die Gründe, weshalb Carbon-faserverstärkte Kunststoffe (CFK) bisher noch nicht den Weg in die breite Serienproduktion gefunden haben. Glasfasern dagegen sind zwar preiswert, aber vergleichsweise schwer. Neue Forschungsansätze von Forschern des Anwendungszentrums für Holzfaserforschung HOFZET des Fraunhofer-Instituts für Holzforschung, Wilhelm-Klauditz-Institut WKI in Braunschweig können dies künftig ändern.

Vorteile vereinen, Nachteile beseitigen

Die Wissenschaftler setzen auf Naturfasern pflanzlichen Ursprungs. Varianten aus Hanf, Flachs, Baumwolle oder Holz sind ähnlich kostengünstig wie Glasfasern und sind zudem leichter als die Pendants aus Glas oder Carbon. Ein weiterer Vorteil: Verbrennt man sie am Ende ihres Lebenszyklus, erzeugen sie zusätzliche Energie – ohne Rückstände. Allerdings reicht ihre Festigkeit nicht an die der Carbonfasern heran.

»Je nach Anwendung kombinieren wir daher Carbon- mit verschiedenen biobasierten Textilfasern«, sagt Prof. Dr.-Ing. Hans-Josef Endres, Leiter des Anwendungszentrums für Holzfaserforschung. Die Fasern liegen oftmals als Matten vor, die entsprechend aufeinander gelegt und von der Kunststoffmatrix umhüllt werden. »Dort, wo die Bauteile stark beansprucht werden, nutzen wir die Carbonfasern, an den anderen Stellen Naturfasern. So können wir die Stärken der jeweiligen Fasern vereinen und die Nachteile zum großen Teil beseitigen.« Das Ergebnis: Die Bauteile sind kostengünstig, haben eine sehr hohe Festigkeit, gute akustische Eigenschaften und sind deutlich ökologischer als reine Carbon-Bauteile.

Üblicherweise behandelt man die Oberfläche von Naturfasern so, dass sie leicht durch die Textilmaschinen laufen und sich möglichst gut zu Geweben verarbeiten lassen – man spricht dabei auch von einer Beschlichtung der Faseroberfläche. Während dies für die Herstellung von Textilien wichtig ist, ist es jedoch meist kontraproduktiv, wenn Verbundwerkstoffe verarbeitet werden sollen.

»Wir optimieren die Oberflächen der Fasern daher aus materialtechnischer Sicht«, erläutert Endres. Spezielle Beschichtungen sollen dafür sorgen, dass sich die Fasern bestmöglich mit der Matrix beziehungsweise der Kunststoffmasse verbinden. Das Potenzial ist groß: »Indem wir dafür sorgen, dass die Fasern optimal an die Matrix anbinden, können wir die Festigkeiten des Materials um bis zu 50 Prozent steigern«, konkretisiert Endres. Eine solche Oberflächenbehandlung ist bei Glas- oder Carbonfasern zwar Usus, bei den Textilfasern ist dies jedoch weitestgehend Neuland.

Die gesamte Herstellungskette im Blick – bis hin zur Entsorgung

Doch die Forscher machen mehr, als die neuen Hybridmaterialien zu kreieren. Sie untersuchen auch, wie sich die Verarbeitungsprozesse für die neuen Werkstoffe industriell umsetzen lassen. Ebenso haben sie die Entsorgung der Hybridmaterialien im Blick. Denn was das Recycling angeht, sind die Faserverbundwerkstoffe ein schwieriges Parkett. Wie lassen sich beispielsweise die teuren Carbonfasern wieder aus der Matrix herauslösen und zurückgewinnen?

Die Wissenschaftler überlegen bei den entwickelten Hybridwerkstoffen bereits im Vorfeld, wie sich diese wiederverarbeiten lassen oder wie zumindest einzelne Materialkomponenten für einen neuen Einsatz zurückgewonnen werden können. Dabei verfolgen sie je nach Materialzusammensetzung verschiedene physikalische, thermische und chemische Ansätze.

Auf der Fachschau nature.tec auf der Grünen Woche vom 16. bis 25. Januar in Berlin stellt das WKI verschiedene textile biobasierte Hybridwerkstoffe vor (Halle 5.2A). Auch Faserformpressteile für die Automobilindustrie präsentieren die Forscher dort. In diesen Teilen werden Fasern in eine thermoplastische Matrix eingebettet, also in Kunststoffe, die sich unter hoher Temperatur verformen lassen, oder aber in eine duroplastische Kunststoffmatrix, die sich nach ihrer Aushärtung nicht mehr verformen lässt.

Simone Peist | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2015/Januar/karosserie-aus-baumwolle-hanf-und-holz.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forscherin entwickelt elektronische Textilstruktur für Medizinprodukte
17.02.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Untergrund beeinflusst Halbleiter-Monolagen
16.02.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie