Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Glaskeramiken bieten als Dielektrika in Kondensatoren eine hohe Energiespeicherdichte in einem erweiterten Temperaturbereich

02.06.2014

SCHOTT POWERAMIC™ Glaskeramiken: Eine neuartige Klasse dielektrischer Werkstoffe für Hochspannungskondensatoren

Der internationale Technologiekonzern SCHOTT hat einen neuen dielektrischen Werkstoff entwickelt. POWERAMIC™ umfasst eine Familie extrem homogener, porenfreier Glaskeramiken. Diese Materialien bieten eine sehr hohe Energiespeicherdichte und auch bei hohen Temperaturen exzellente dielektrische Eigenschaften. So ermöglichen sie im Hochspannungsbereich in Anwendungen als passive Komponenten wie Kondensatoren  signifikant kleinere und leichtere Bauweise bei gleichzeitig hoher Leistungsdichte.  
 
Kondensatoren sind passive elektrische Komponenten, die Energie in Form eines elektrostatischen Feldes im Dielektrikum zwischen Metallkontakten speichern. Sie werden häufig in Stromversorgungssystemen genutzt, die Frequenz oder Spannungsniveau umwandeln, um die Spannung und den Stromfluss zu puffern, zu stabilisieren oder zu koppeln. Hierbei steigt vor allem der Bedarf an Hochspannungskondensatoren, zum Beispiel für Excimer Laser in industriellen oder medizinischen Anwendungen, für medizinische Röntgengeräte, für die Hochspannungsversorgung bei industriellen Anwendungen oder  in Stromnetzen für erneuerbare Energie. 


POWERAMIC™: Diese von SCHOTT neu eingeführte Materialklasse von Glaskeramiken für Dielektrika bietet eine außergewöhnlich hohe Energiespeicherdichte in Kombination mit herausragenden Temperatureigenschaften für kleinere und leichtere Hochspannungskondensatoren. Quelle: SCHOTT

Höhere Spannungen und Stromdichten führen jedoch zu einer steigenden thermischen Belastung. Heutige Kondensatortechnologien für Hochspannungsanwendungen basieren meist auf z.B. Polypropylen (PP) oder N4700 Keramiken. Beide sind auf Betriebstemperaturen unter 90° C limitiert, entweder aufgrund ihres Verlustes an Kapazität (N4700) oder an Zuverlässigkeit (PP) bei zunehmender Wärme. Die neu von SCHOTT eingeführte Klasse der POWERAMIC™ Werkstoffe zeigt eine höhere Leistungsfähigkeit in Bezug auf die Energiespeicherdichte und die dielektrischen Eigenschaften in einem erweiterten Temperaturbereich. 

„POWERAMIC™ Glaskeramiken sind porenfrei und extrem homogen, was ihre hohe elektrische Durchschlagsfestigkeit unterstützt. Ihre Energiespeicherdichte übersteigt diejenige heutiger Kondensator-Lösungen bis zu zehnfach. So ist es möglich, kleinere und leichtere Kondensatoren zu bauen“, sagt Dr. Martin Letz, Senior Principal Scientist bei SCHOTT Research & Technology Development. “Die Nano-Struktur der Kristalle, die unter eng kontrollierten Bedingungen aus der vollständig amorphen Glasphase auskristallisiert werden, verbessert die dielektrischen Eigenschaften bei höheren Feldstärken und vergrößert den Temperatureinsatzbereich im Vergleich zu Keramikkondensatoren.” 

SCHOTT ist weltweit führender Lieferant von Glaskeramiken wie ZERODUR® Glaskeramik mit extrem geringen thermischen Ausdehnungskoeffizienten für den Einsatz als Spiegelsubstrat in Weltraumteleskopen, CERAN® Glaskeramik-Kochflächen, ROBAX® Feuersichtscheiben für Kamine und Kachelöfen sowie NEXTREMA® Glaskeramik für anspruchsvollen industrielle Anwendungen.

Durch Anwendung desselben Herstellungsprinzips auf andere chemische Zusammensetzungen des Rohmaterials entwickelte SCHOTT eine neue Klasse von Hochleistungsdielektrika. POWERAMIC™ Glaskeramiken sind Titanat-basiert. Als Glaskeramiken werden sie in einem zweistufigen Prozess hergestellt. Zuerst wird ein transparentes Glas mit einer vollständig amorphen, porenfreien Struktur geschmolzen.

Im zweiten Schritt wird ein exakt definiertes Zeit-Temperaturprofil angewendet, um Kristalle in Nano-Größe innerhalb des Glases zu züchten. Ihre einzigartigen Eigenschaften werden mithilfe hoch spezifizierter und kontrollierter chemischer Zusammensetzungen und Prozesse erzielt, die enge Toleranzen und zuverlässig stabile Qualität ermöglichen. 

POWERAMICTM Glaskeramik wird als qualifiziertes Halbzeug für den Bau von Kondensatoren geliefert, bei Bedarf auch in metallisierter Form. Hierbei können alle marktüblichen Kondensatorbauformen bedient werden wie Doorknob/Hockey Puck Kondensatoren, SLC (Single Layer Capacitors) oder als SMD (Surface Mount Device) Kondensatoren sowie auch kundenspezifischen Designs, um individuelle Ansprüche zu erfüllen. 

Weitere Informationen: http://www.schott.com/epackaging/english/glass/poweramic-glass-ceramic-dielectrics.html

Fotodownloadlink: http://www.schott-pictures.net/presskit/236675.poweramic

Weitere Pressebilder finden Sie unter: www.schott-pictures.net
  
Pressekontakt
 
SCHOTT AG   
Dr. Haike Frank  
PR Manager    
Phone:  +49 (0)6131 - 66 4088  
Fax:  +49 (0)3641 - 28889 141
haike.frank@schott.com
www.schott.com 
 
 
ÜBER SCHOTT
 
SCHOTT ist ein internationaler Technologiekonzern mit 130 Jahren Erfahrung auf den Gebieten Spezialglas, Spezialwerkstoffe und Spitzentechnologien. Mit vielen seiner Produkte ist SCHOTT welt-weit führend. Hauptmärkte sind die Branchen Hausgeräteindustrie, Pharmazie, Elektronik, Optik und Transportation. Das Unternehmen hat den Anspruch, mit hochwertigen Produkten und intelligenten Lösungen zum Erfolg seiner Kunden beizutragen und SCHOTT zu einem wichtigen Bestandteil im Leben jedes Menschen zu machen. SCHOTT bekennt sich zum nachhaltigen Wirtschaften und setzt sich für Mitarbeiter, Gesellschaft und Umwelt ein. In 35 Ländern ist der SCHOTT Konzern mit Produktions- und Vertriebsstätten kundennah vertreten. 15.400 Mitarbeiter erwirtschafteten im Geschäftsjahr 2012/2013 einen Weltumsatz von 1,84 Milliarden Euro. Die SCHOTT AG mit Hauptsitz in Mainz ist ein Unternehmen der Carl-Zeiss-Stiftung.

SCHOTT AG - Hattenbergstrasse 10 - 55122 Mainz - Deutschland
Phone: +49 (0)6131/66-2411 - info.pr@schott.com - www.schott.com

Dr. Haike Frank | SCHOTT AG

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie