Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gemeinschaftsarbeit im Bereich Verbundwerkstoffe führt zu schnellerer Kunststoffelektronik

02.05.2012
Die Geschwindigkeit, mit der Ihr Smartphone auf ein Streichen über das Display reagiert hängt davon ab, wie schnell die elektrischen Ladungen durch die einzelnen Displaykomponenten transportiert werden.

Wissenschaftler am Imperial College London (ICL) haben zusammen mit Kollegen an der King Abdullah University of Science and Technology (KAUST) daran gearbeitet, Organische Dünnschichttransistoren (OTFTs) zu entwickeln, die dank einer ausgereiften Lösungsverarbeitung durch die Verbindung von zwei organischen Halbleitern in der Lage sind, eine konstante Trägerbeweglichkeit in Rekordgeschwindigkeit zu bieten. Die OTFTs und ihre Verarbeitungsmethoden bieten ungeahnte Möglichkeiten für zukünftige elektronische Anwendungen.

Die KAUST-Gruppe unter Leitung von Professor Aram Amassian arbeitet zusammen mit Dr. Thomas Anthopoulos, Department of Physics, ICL, und den Kollegen Professor Iain McCulloch und Dr. Martin Heeney, Department of Chemistry, an der Entwicklung und Charakterisierung eines Verbundwerkstoffs, der den Ladungstransport verbessern und die Herstellung von schnelleren organischen Transistoren ermöglichen soll. Sie haben ihre Halbleiterverbindung in einem gemeinsam verfassten Artikel beschrieben, der in der Zeitschrift "Advanced Materials" veröffentlicht wurde:

http://onlinelibrary.wiley.com/doi/10.1002/adma.201200088/abstract

Angesichts der Herausforderungen, die kostenaufwändige Vakuumbedampfungsverfahren mit sich bringen, erreichen Chemiker, die sich mit der organischen Synthese beschäftigen, bei der Synthetisierung von konjugierten löslichen Kleinmolekülen zunehmend Erfolge. "Auch wenn sie dazu neigen, grosse Kristalle zu bilden, bleibt die Reproduzierbarkeit hoher Qualität bei durchgehenden und gleichmässigen Filmen immer noch ein Problem dar", meinte Dr.

Anthopoulos, Forschungsleiter am Imperial College. Im Gegensatz dazu verhalten sich Polymerhalbleiter häufig recht löslich und bilden hochwertige durchgehende Filme. Bis vor Kurzem konnten mit ihnen jedoch keine Ladungsträgerbeweglichkeiten von mehr als 1 cm2/Vs erreicht werden.

Im Rahmen dieses Gemeinschaftsprojekts haben Chemiker am Imperial College mit Festkörperphysikern des Centre for Plastic Electronics des Imperial Colleges (http://www3.imperial.ac.uk/plasticelectronics)

und Materialwissenschaftler an der KAUST zusammengearbeitet und waren so in der Lage, die vorteilhaften Eigenschaften von Polymeren auf der einen Seite und jene von Kleinmolekülen auf der anderen in einem einzigen Verbundwerkstoff zu kombinieren. Durch diese Kombination konnten nicht nur die Leistungsfähigkeit im Vergleich zu der jeweiligen Leistungsfähigkeit der einzelnen Stoffe gesteigert, sondern auch die Festkörper-zu-Festkörper-Reproduzierbarkeit und Stabilität verbessert werden.

Die verbesserte Leistungsfähigkeit wird teilweise zurückgeführt auf die polykristalline Textur der Kleinmolekül-Komponente der Verbindung und auf die Planheit und Gleichmässigkeit, die auf der Oberfläche des polykristallinen Films erzielt wird. Letzteres ist von entscheidender Bedeutung für Top-Gate-Geräte mit Bottom-Contact-Konfiguration, wobei die Oberfläche der Halbleiter-Verbindung das Halbleiter-Dielektrikum-Interface bildet, wenn das Polymer-Dielektrikum lösungsbeschichtet wird.

Die Gleichmässigkeit und die Kontinuität der Oberfläche und das Fehlen von sichtbaren Körnungsrändern sind unüblich für sonst hoch polykristalline Kleinmoleküle in reiner Form, was die Annahme nahelegt, dass Polymerbinder eine Glättung bewirken und dass sie sogar die Halbleiterkristalle mit einer dünnen Schicht im Nanobereich überziehen. "Die Leistungsfähigkeit der Polymer-Molekül-Verbindung übertrifft 5 cm2/Vs. Das ist ein Wert, der ziemlich nahe an der oben genannten Beweglichkeit eines einzigen Moleküls liegt", führte der KAUST-Co-Autor Prof. Amassian aus.

Die Materialwissenschaftler an der KAUST haben sich nun mit der Phasentrennung, der Kristallinität und der Morphologie der organischen Halbleiterverbindung, unter Anwendung einer Kombination aus Synchrotron-basierter Röntgenstreuung im D1-Strahlrohr der Cornell High Energy Synchrotron Source (CHESS), Energiegefilterte Transmissionselektronenmikroskopie (EF-TEM), und Rasterkraftmikroskopie in topographischen und Phasenmodi beschäftigt.

"Diese Arbeit ist ganz besonders spannend, denn sie zeigt, dass man durch die Anwendung sich ergänzender Charakterisisierungstechniken auf diese komplexen organischen Verbindungen jede Menge darüber lernen kann, wie sie funktionieren.

Es ist geradezu ein Lehrbuchbeispiel einer Studie der Beziehungen struktureller Eigenschaften und verdeutlicht die Nützlichkeit solcher Gemeinschaftsprojekte", sagte Alberto Salleo, Professor an der Stanford University, Experte für fortgeschrittene strukturierte Charakterisierung von Polymerhalbleitern. "Eine Beweglichkeit von 5 cm2/Vs ist schon ein spektakulärer Wert. Die beschriebenen Methoden zeigen Forschern den Weg hin zu noch höheren Beweglichkeiten."

"Dieser simple Verbindungsansatz könnte im Prinzip zur Entwicklung von organischen Transistoren mit Leistungseigenschaften führen, die den gegenwärtigen Stand der Technik bei weitem übertreffen", fügte Dr. Anthopoulos hinzu.

Weitere Informationen:
Christopher Sands, Head of University Communications
christopher.sands@kaust.edu.sa
+966-54-470-1201
(Dr. Aram Amassian steht für Interviews zur Verfügung)

Christopher Sands | presseportal
Weitere Informationen:
http://www.kaust.edu.sa

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Cybersicherheit für die Bahn von morgen

24.03.2017 | Informationstechnologie

Schnell und einfach: Edge Datacenter fürs Internet of Things

24.03.2017 | CeBIT 2017

Designer-Proteine falten DNA

24.03.2017 | Biowissenschaften Chemie