Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ganz porös und trotzdem stark - Implantat aus porösem Titan hilft bei Bandscheibenschäden

09.01.2009
Hilfe für Patienten mit Bandscheibenschäden: Ein patentiertes Jülicher Herstellungsverfahren schafft maßgeschneiderte Poren in Titan, die optimal durch Knochenzellen besiedelt werden. Ursprünglich entwickelten Energieforscher das preiswerte Verfahren, um poröse Werkstoffe für Brennstoffzellen zu verbessern.

Stabil muss es sein - aber gleichzeitig porös und von Hohlräumen durchzogen: So können Implantat und benachbarte Wirbel schnell und nahtlos miteinander verwachsen. Jülicher Forscher brachten nun ihr Fachwissen über poröse Werkstoffe aus der Brennstoffzellenforschung auch im medizinischen Bereich zum Einsatz.

Das Ergebnis, ein Wirbelsäulenimplantat aus porösem Titan, wurde von der Schweizer Firma Synthes in ihre Produktpalette aufgenommen. "Das Projekt war eine spannende Herausforderung, denn es stellten sich neue Aufgaben, die wir in die Entwicklung mit einbeziehen mussten", so Dr. Hans Peter Buchkremer vom Jülicher Institut für Energieforschung und ansonsten für die Entwicklung von Brennstoffzellenmembranen verantwortlich. "Diese interdisziplinäre Zusammenarbeit war für uns äußerst interessant, und wir sind stolz auf das Ergebnis."

Grundlage für poröse Werkstoffe ist die Platzhaltermethode: Titanpulver und ein Platzhalterpulver werden zunächst vermischt. Unter dem Druck von 100 Tonnen wird das Gemisch in einen Block gepresst. So entsteht das Halbzeug, welches durch mechanische Bearbeitung wie etwa Fräsen in die gewünschte Form gebracht wird. Um das Werkstück porös zu machen, wird es auf rund 80 Grad erhitzt. Der Platzhalter zersetzt sich, entweicht und hinterlässt die gewünschten Poren. Ein weiteres kontrolliertes Erhitzen, das Sintern, dient der Festigung des Titans; eine Temperatur von etwa 1300 Grad erlaubt es Atomen, zu wandern und die Titankörner stabil zu verbinden.

Das patentierte Jülicher Herstellungsverfahren nutzt den speziellen Platzhalter Ammoniumhydrogencarbonat, der außerordentlich gute Eigenschaften aufweist. "Er hat eine wesentlich niedrigere Zersetzungstemperatur als herkömmliche Platzhalter und reagiert beim Erhitzen kaum mit dem Titan. Daher hinterlässt er keine Rückstände, die die Festigkeit des Werkstoffs oder die Verträglichkeit des Implantats im Körper beeinträchtigen", erklärt Projektleiter Dr. Martin Bram. Außerdem schäumt der Platzhalter nicht beim Erhitzen. Deshalb können Größe und Anteil der entstehenden Poren genau gesteuert werden, eine für die Besiedelung mit Knochenzellen wesentliche Voraussetzung.

Als Bram und seine Kollegen auf einem Kongress im Jahr 2002 ihre Innovation vorstellten, weckten sie sofort das Interesse der Medizin-Firma Synthes. Zusammen entwickelte man ein neues Verfahren zur Herstellung von Wirbelsäulenimplantaten. Diese bestehen zudem aus zwei Zonen unterschiedlicher Dichte, um verschiedenen Ansprüchen bei der Implantation gerecht werden zu können.

Inzwischen brachte Synthes das Produkt "PlivioPore" aus porösem Titan auf dem Markt, das erfolgreich eingesetzt wird, um Patienten mit besonders schweren Bandscheibenschäden ein schmerzfreies Leben zu ermöglichen. Bei dem Eingriff platzieren die Ärzte zwei quaderförmige Implantate horizontal anstelle der defekten Bandscheibe. Mit der Zeit verwachsen sie mit den benachbarten Rückenwirbeln und stabilisieren diese.

In Jülich soll die Platzhaltermethode nun weiterentwickelt werden. "Der nächste Schritt wird es sein, Werkstücke aus porösem Metall per Spritzguss direkt herzustellen", verrät Bram. Bei diesem Verfahren entfällt die mechanische Bearbeitung der Implantate, was den Produktionsprozess vereinfacht und kostengünstiger macht.

Ansprechpartner:
Dr. Martin Bram, Tel. 02461 61-6858, E-Mail: m.bram@fz-juelich.de
Pressekontakt:
K.Schinarakis, Tel. 02461 61-4771, E-Mail: k.schinarakis@fz-juelich.de
Das Forschungszentrum Jülich...
... betreibt interdisziplinäre Spitzenforschung zur Lösung großer gesellschaftlicher Herausforderungen in den Bereichen Gesundheit, Energie und Umwelt sowie Informationstechnologie. Kombiniert mit den beiden Schlüsselkompetenzen Physik und Supercomputing werden in Jülich sowohl langfristige, grundlagenorientierte und fächerübergreifende Beiträge zu Naturwissenschaften und Technik erarbeitet als auch konkrete technologische Anwendungen. Mit rund 4 400 Mitarbeiterinnen und Mitarbeitern gehört Jülich, Mitglied der Helmholtz-Gemeinschaft, zu den größten Forschungszentren Europas.

Peter Schäfer | idw
Weitere Informationen:
http://www.fz-juelich.de/ief/ief-1/
http://www.synthes.com/html/PlivioPore.6907.0.html?&L=1

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops