Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschungsprojekt gestartet: Entwicklung einer Fluorcarbon-freien Textilausrüstung

03.08.2016

Wissenschaftler der Hohenstein Institute und des Fraunhofer Institutes für Grenzflächen- und Bioverfahrenstechnik IGB geben den Start eines interdisziplinären Forschungsvorhabens bekannt.
Ziel des Gemeinschaftsprojekts ist die Entwicklung einer natürlichen, proteinbasierten, wasser- und schmutzabweisenden Textilausrüstung. Diese neuartige Veredelungsmethode soll künftig eine Alternative zu umstrittenen Fluorcarbon-Ausrüstungen bieten.

Die Hohenstein Institute in Bönnigheim und das Fraunhofer Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart (mit seinem Institutsteil BioCat in Straubing) geben den Start eines interdisziplinären Forschungsvorhabens bekannt, welches auf Grundlage natürlicher Proteine eine neuartige Textilausrüstung mit wasser- und schmutzabweisenden Eigenschaften entwickeln wird.


Abb.1: Machbarkeitsstudie – Textilien auf Cellulosebasis wurden mit einem grün-fluoreszierenden Markerprotein ausgerüstet an welches ein Cellulose-Anker gebunden war.

© Hohenstein Institute


Abb. 2: Wasserabweisendes (hydrophobes) Textil.

© Hohenstein Institute

Diese soll künftig als Alternative zur giftigen und umstrittenen Hydrophobierung mittels per- und polyfluorierten Chemikalien dienen. Ziel des Gemeinschaftsprojekts (IGF-Nr. 18884 N) ist eine ökonomisch und nachhaltig stabile Funktionalisierung von Textilien als Ersatz für die aktuell nach wie vor noch vielfach verwendeten Fluorcarbon-Ausrüstungen. Durch die gezielte Verknüpfung des Fachgebiets Biotechnologie mit der Textilwissenschaft versprechen sich die Wissenschaftler eine erfolgreiche Umsetzung des Projektziels.

Der im Forschungsvorhaben angestrebte Ansatz soll alleine mithilfe von wasserabweisenden (hydrophoben) Proteinen, sogenannten Hydrophobinen, verwirklicht werden. Diese Proteine kommen natürlicherweise in den Zellwänden von Pilzen vor, wo sie eine wasserabweisende Funktion haben. Im Laufe des Projekts möchten die Forscher die Pilzproteine biotechnologisch herstellen und anschließend auf Textilien aufbringen.

Das Prinzip beruht darauf, die hydrophoben Proteine mit einem „Anker“ zu versehen, der sich als Bindeglied selektiv und stabil an Zellulosefasern binden kann. „Anker“ dieser Art sind ebenfalls in der Natur verfügbar, z. B. bei Zellulose-abbauenden Enzymen (sog. Zellulasen), die vielen Pilzen und Bakterien dabei helfen Biomasse abzubauen, um an Nährstoffe zu gelangen.

In einer Machbarkeitsstudie der Hohenstein Institute und des Fraunhofer Instituts, wurde das Prinzip der „Anker-Protein-Ausrüstung“ bereits umgesetzt. Es gelang bisher, ein grün-fluoreszierendes Marker-Protein über einen Cellulose-Anker stabil an verschiedene Textilien zu binden.

Wasser- und schmutzabweisende Eigenschaften von Textilien sind von großer Bedeutung, vor allem für Outdoor-Produkte, technische Textilien, OP-Textilien, aber auch zum Schutz von Fasern vor mikrobieller Zersetzung wie z.B. im Automobil. Derzeit werden diese Eigenschaften hauptsächlich durch chemische Fluorcarbon-Verbindungen erzielt, die als langlebige organische Schadstoffe eingestuft sind.

Fluorcarbon-Verbindungen werden unter Umständen von Mensch und Tier über Nahrung und Trinkwasser aufgenommen und reichern sich in deren Organen an. Aufgrund der Gefahren für Mensch und Umwelt wächst der Druck durch Medien und Verbraucher für alternative Textilausrüstungen mit den gewünschten Eigenschaften. Daher ist die Umstellung von Fluorcarbon-Ausrüstungen auf alternative Substanzen und Verfahren eine bedeutende Herausforderung für die Textilindustrie. Die protein-basierte Textilausrüstung stellt vor diesem Hintergrund ein alternatives Hydrophobierungsverfahren dar, das zugleich kosteneffizient, nachhaltig und gesundheitlich unbedenklich ist.

Das Gemeinschaftsprojekt wird von einem projektbegleitenden Ausschuss unterstützt, der sich aus verschiedenen industriellen Vertretern der Textil- und Biotechnologiebranche zusammensetzt. Die industrielle Umsetzbarkeit und Wirtschaftlichkeit der neu entwickelten Veredlungsmethode wird somit von Anfang an berücksichtigt.

Das Fraunhofer IGB, Institutsteil BioCat in Straubing, beschäftigt sich schwerpunktmäßig mit Biokatalyse-Systemen und der fermentativen Herstellung biologischer Substanzen. Dort werden derzeit die entsprechenden Fusionsproteine aus wasserabweisendem Protein und Zellulose-Anker produziert, die sich für die Veredlung zellulosehaltiger Textilien aus Baumwolle, Viskose, Modal oder Lyocell eignen.

Die Hohenstein Institute in Bönnigheim gehören zu den bedeutendsten, unabhängigen Forschungs- und Prüfeinrichtungen im textilen Sektor. Der integrierte Life Science Bereich namens William-Küster-Institut für Hygiene, Umwelt und Medizin, widmet sich den zahlreichen textilbezogenen Fragestellungen im Projekt – von der Auswahl geeigneter Textilmuster auf Zellulosebasis über die Veredlung der Textilien mit den Proteinen bis hin zur Charakterisierung der veredelten Textilmuster. Die Forscher untersuchen zum einen die Funktionalität und Waschbeständigkeit der Protein-Ausrüstung. Zum anderen analysieren sie weitere Aspekte wie Atmungsaktivität, Biokompatibilität, Umweltverträglichkeit und letztendlich auch die biologische Abbaubarkeit der veredelten Textilmuster.

Weitere Informationen:

http://www.hohenstein.de/de/news/news_press/archiv_2/press.xhtml

Marianna Diener | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?
30.03.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE