Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronisch aktive Fäden werden reproduzierbar

22.07.2013
Wissenschaftler der TU Darmstadt beschichten Fasern mit organischen Halbleitern

Intelligente Textilien stehen erst am Anfang ihrer Entwicklung. Das Problem bisher: Die elektronischen Bauteile, sogenannte organische Halbleiterbauelemente, konnten nicht reproduzierbar auf dreidimensionale Strukturen wie Fasern aufgebracht werden. Doch nun haben Darmstädter Materialwissenschaftler eine Maschine entwickelt, mit der elektronisch aktive Materialien auf Fäden aufgedampft werden können.


Die Forscher haben schon eine Faser von 500 Mikrometern auf 5 Millimetern zum Leuchten gebracht. Die OLEDs funktionieren auch noch, wenn die Faser gebogen wurde.

Urheberhinweis:
Tobias Könyves-Toth / TU Darmstadt

„Die reproduzierbare Rotationsbeschichtung mit Halbleiterbauelementen eröffnen im Bereich der intelligenten Textilien theoretisch unzählige Anwendungen“, berichtet Prof. Heinz von Seggern, Leiter des Fachgebiets Elektronische Materialeigenschaften der TU Darmstadt. Mit anderen Worten: Das Einweben von elektronischen Bauteilen in die Kleidung ist damit aus ingenieurstechnischer Sicht einen wichtigen Schritt vorangekommen.

Intelligente Textilien rücken näher

Der Materialwissenschaftler Tobias Könyves-Toth, der die Idee für die Maschine im Rahmen des Verbundprojektes LUMOLED des Bundesministeriums für Bildung und Forschung BMBF konzipiert hat, konnte organische Halbleiterbauelemente auf Glasfasern aufdampfen: „Wir haben uns dabei organischen Leuchtdioden gewidmet, sogenannten OLEDs, weil sie die höchsten Anforderungen an die Substrate haben. Es ist uns nun erstmals gelungen, funktionstüchtige OLEDs auf einen Faden aufzubringen und ihn zum Leuchten zu bringen. Das Aufbringen anderer Bauelemente, wie zum Beispiel Transistoren oder Solarzellen, hat andere Probleme, ist bei der Beschichtung aber im Vergleich weniger aufwändig.“

Ein Problem bei der Faserbeschichtung ist, dass sie unter Vakuumbedingungen stattfinden muss, denn OLEDs sind gegen Sauerstoff und Wasser hochempfindlich. „Wir haben mit der Rotationsbeschichtung eine Möglichkeit gefunden, die Faser im Vakuum so zu drehen, dass sie völlig gleichmäßig beschichtet wird und wir sie anschließend ohne Luftkontakt aus dem Vakuum heraus bekommen“, erläutert Könyves-Toth. Die Bauteile werden auf den Faden aufgebracht, indem die Materialien im Vakuum erhitzt werden, bis sie verdampfen. Wie bei auf dem Herd erhitztem Wasser, aus dem Wasserdampf aufsteigt und auf der Fensterscheibe kondensiert, kondensieren die Materialien auf der Faser. Insgesamt sieben Schichten müssen auf die Faser aufgetragen werden, von denen einzelne die Dicke von gerade mal ein paar Atomen besitzen. „Insgesamt sind die auf die Faser aufgetragenen Schichten etwa 200 Nanometer dick – das heißt, Feinstaubpartikel sind 50 Mal größer als die Schichtdicke der OLEDs.“ Und hier tut sich ein weiteres Hindernis auf: Textilfäden haben eine raue Oberfläche. Die elektronischen Bauteile funktionieren jedoch nur auf glatten Oberflächen – schon winzige Kratzer von mehr als ein paar Nanometern Tiefe können zu Defekten wie Kurzschlüssen führen.

Noch mangelt es an Langlebigkeit

„Für unsere ersten Versuche haben wir deswegen Glasfasern verwendet“, erzählt Könyves-Toth, „denn sie haben eine sehr glatte Oberfläche.“ Aber Glasfasern sind spröde und eignen sich nicht zum Weben von Textilien. Daher unternehmen die Darmstädter nun auch Versuche mit von Polymeren ummantelten Glasfasern. Ziel ist es, für Textilien verwendete Polymerfasern mit organischen Halbleiterbauteilen zu bestücken.

Angefangen hat Könyves-Toth mit einer Faser von 1 mm Dicke. Jetzt ist man ein gutes Stück weiter: „Wir haben schon eine Faser von 500 Mikrometern auf 5 Millimetern zum Leuchten gebracht“, freut sich Könyves-Toth , „und sogar wenn die Faser gebogen wurde, funktionierten die OLEDs noch.“

Wenn die Versuche auch schon einen großen Erfolg darstellen – der Weg hin zu intelligenten Textilien ist noch weit. Denn die elektrische Funktionstüchtigkeit ist nicht von langer Dauer. Noch gibt es nämlich keine Lösung für eine Schutzschicht, die die organischen Halbleitermoleküle vor Sauerstoff und Feuchtigkeit schützen könnten. Erste Ansätze hierfür existieren bereits, aber bis das Verfahren zur Marktreife gelangt, wird noch einige Zeit ins Land gehen. Und auch die bislang verwendeten Fasern sind noch zu spröde und zu dick, um sie in Textilien verweben zu können. Auch halten die die leuchtenden Fasern die mechanische Beanspruchung beim Verweben der Fäden und beim Tragen der Kleidung noch nicht aus.

Die Darmstädter Materialwissenschaftler jedenfalls prüfen nun erst einmal eine Patentanmeldung. Ihre Entwicklung stößt jedenfalls auf reges Interesse in der Textilindustrie, wie von Seggern und Könyves-Toth in Griechenland erfahren durften. Dort haben sie Anfang Juli auf dem International Symposium on Flexible Organic Electronics (ISFOE 13) ihr Verfahren vorgestellt.

Es gibt zwar noch viel zu tun, aber ein erster Schritt hin zur reproduzierbaren und kontrollierbaren Produktion intelligenter Textilien ist getan. Und Anwendungsmöglichkeiten gibt es praktisch grenzenlos – „die einzige Grenze, die hier existiert, ist die der menschlichen Phantasie“, formuliert es Könyves-Toth.

Pressekontakt
Prof. Heinz von Seggern
Tel. 06151 / 16 – 6301
Mail: seggern@e-mat.tu-darmstadt.de
Tobias Könyves-Toth
Mail: koenyves@e-mat.tu-darmstadt.de
Hinweis an die Redaktionen
Pressefotos zu den elektronisch aktiven Fäden können Sie im Internet unter www.tu-darmstadt.de/pressebilder herunterladen.

MI-Nr. 68/2013, gek

Technische Universität Darmstadt
Kommunikation und Medien
Karolinenplatz 5
64289 Darmstadt/Germany
Tel. ++49(0)6151 16-2063
Fax ++ 49(0)6151 16-4128
E-Mail: presse@tu-darmstadt.de

Jörg Feuck | idw
Weitere Informationen:
http://www.tu-darmstadt.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Clevere Folien voller Quantenpunkte
27.03.2017 | Technische Universität Chemnitz

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE