Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Gummituch auf atomarer Skala

07.02.2018

Dehnungen und Zerrungen können die Eigenschaften eines Materials drastisch verändern. An der TU Wien entwickelte man nun eine Methode, diese inneren Verbiegungen sichtbar zu machen.

Sie gelten seit Jahren als großes Hoffnungsgebiet in der Materialwissenschaft – zweidimensionale Materialien wie etwa Graphen, die nur aus einer oder aus wenigen Atom-Schichten bestehen. Sie weisen bemerkenswerte Eigenschaften auf, die ganz neue technische Möglichkeiten eröffnen, von der Sensortechnik bis zur Solarzelle.


Untersuchungstechnik: Mit rotem Licht beleuchten, blaues Licht zurückbekommen

TU Wien


Wie ein Gummituch, das über ein Gerüst gebreitet wird, verbiegt sich auch die ultradünne Schicht auf atomarer Skala.

TU Wien

Ein wichtiges Phänomen konnte allerdings bisher kaum präzise vermessen werden: Die extremen inneren Dehnungen und Stauchungen, die in solchen Materialien auftreten können und die ihre physikalischen Eigenschaften oft drastisch verändern.

An der TU Wien gelang es nun, diese Verzerrungen in 2D-Materialien auf mikroskopischer Skala vollständig zu messen, und so kann man nun auch genau beobachten, wie man durch bloßes Verbiegen des Materials seine Eigenschaften Punkt für Punkt anpassen kann. Präsentiert wurde die neue Messmethode nun im Fachjournal „Nature communications“.

Dehnen und zerren

Wenn man ein Material staucht oder dehnt, ändert sich der Abstand zwischen einzelnen Atomen, und dieser Abstand hat einen Einfluss auf die elektronischen Eigenschaften des Materials. Diesen Umstand nutzt man in der Halbleitertechnik schon lange. Man kann etwa Silizium-Kristalle gezielt so wachsen lassen, dass sie dauerhaft unter innerer mechanischer Spannung stehen.

Zweidimensionale Materialien, die nur aus einer ultradünnen Schicht bestehen, bieten hier allerdings viel weitreichendere Möglichkeiten: „Einen Kristall kann man vielleicht um ein Prozent stauchen, bis er bricht. Bei 2D-Materialien sind Verbiegungen von zehn oder zwanzig Prozent möglich“, erklärt Prof. Thomas Müller vom Institut für Photonik (Fakultät für Elektrotechnik und Informationstechnik) an der TU Wien.

Je nach Verbiegung und den mechanischen Spannungen, die dadurch im Inneren des Materials auftreten, können sich die elektronischen Eigenschaften völlig verändern – etwa die Fähigkeit der Elektronen, einfallendes Licht zu absorbieren.

„Wenn man bisher messen wollte, welche Spannungen in einem solchen Material auftreten, musste man auf recht komplizierte Messverfahren zurückgreifen“, sagt Lukas Mennel (TU Wien), Erstautor der Publikation. Man kann etwa die Oberfläche mit einem Transmissionselektronenmikroskop abbilden, die durchschnittlichen Atom-Abstände messen und daraus auf Dehnungen oder Stauchungen rückschließen. An der TU Wien gelingt das aber nun viel einfacher – und gleichzeitig viel genauer.

Rotes Licht hinein – blaues Licht heraus

Man nutzt dabei einen bemerkenswerten Effekt, die sogenannte Frequenzverdopplung: „Wenn man bestimmte Materialien, in unserem Fall eine Schicht aus Molymbdändisulfid, mit dem passenden Laserlicht bestrahlt, dann kann es passieren, dass das Material eine andere Lichtfarbe zurückstrahlt“, erklärt Thomas Müller. Zwei Photonen des einfallenden Laserlichts werden zu einem Photon mit doppelt so hoher Energie vereint und vom Material emittiert.

Die Stärke dieses Effekts hängt allerdings von der inneren Symmetrie des Materials ab. Normalerweise hat Molybdändisulfid eine bienenwabenartige Struktur, also eine hexagonale Symmetrie. Wird das Material gedehnt oder gestaucht, wird diese Symmetrie geringfügig gestört – und diese kleine Störung hat dramatische Auswirkungen auf die Intensität des Lichts, das vom Material zurückgestrahlt wird.

Wenn man eine Schicht Molybdändisulfid über eine Mikrostruktur legt, ähnlich wie ein Gummituch über ein Klettergerüst, dann ergibt sich ein kompliziertes Muster aus lokalen Verzerrungen. Man kann nun mit dem Laser das Material Punkt für Punkt abtasten und dadurch eine detaillierte Landkarte der Dehnungen und Stauchungen erhalten. „Dabei können wir nicht nur messen, wie stark die Verbiegungen sind, sondern auch genau sehen, in welche Richtung sie verlaufen“, erklärt Lukas Mennel.

Diese Abbildungsmethode kann man nun verwenden, um die Materialeigenschaften lokal gezielt anzupassen. „Man könnte dadurch zum Beispiel in Solarzellen durch maßgeschneiderte Materialverbiegungen dafür sorgen, dass die freien Ladungsträger möglichst rasch in die richtige Richtung abtransportiert werden“, hofft Thomas Müller. Der Forschung an 2D-Materialien steht somit ein neues, mächtiges Werkzeug zur Verfügung.

Originalpublikation: Optical imaging of strain in two-dimensional crystals, Lukas Mennel et al., Nature Communicationsvolume 9, 516 (2018). doi:10.1038/s41467-018-02830-y
https://www.nature.com/articles/s41467-018-02830-y

Kontakt:
Prof. Thomas Müller
Institut für Photonik
Technische Universität Wien
Gusshausstraße 27-29, 1040 Wien
T: +43-1-58801-38739
thomas.mueller@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics