Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein "Graphen-Schalter" für elektromagnetische Strahlung

27.11.2015

Forscher aus Augsburg, Exeter und Zürich berichten in Nature Communication über neues hybrides Metamaterial mit hohem Anwendungspotential

Augsburg zeigt in Nature Communications, wie die außergewöhnlichen Eigenschaften von Graphen genutzt werden können, um Strukturen zu konstruieren, die zur Kontrolle und Steuerung elektromagnetischer Strahlung über ein breites Spektrum von Wellenlängen hinweg genutzt werden können.


Die verwendete Hybrid-Metamaterialstruktur besteht aus einer Anordnung von Spaltring-Resonatoren aus Gold in Kombination mit Nanobändern von Graphen, die zwischen den metallischen Elementen liegen.

© Isaac Luxmoore/University of Exeter

Zwei Experimentalphysik-Gruppen der Universität Exeter (unter Leitung von Prof. Geoffrey Nash, Ph. D.) und der ETH Zürich (unter Leitung von Prof. Dr. Jérôme Faist) berichten zusammen mit PD Dr. Sergey Mikhailov und seiner Theorie-Gruppe am Institut für Physik der Universität Augsburg in der Fachzeitschrift Nature Communications über das Design und die Untersuchung eines neuen hybriden „Metamaterials”, das spezifische Eigenschaften mit hohem Anwendungspotential besitzt, die natürliche Materialien nicht aufweisen.

Die Physiker aus Augsburg, Exeter und Zürich kombinierten Nanobänder von Graphen mit einem sogenannten Spaltring-Resonator, einer speziellen Form einer metallischen Antenne. Die gesamte Struktur liegt auf einem Siliziumdioxid-Substrat, das auf der Rückseite metallisch beschichtet ist. Graphen-Elektronen sind in der Lage, über die Nano-Bänder hinweg Plasma-Schwingungen zu erzeugen. Auch die Elektronen des Spaltring-Resonators schwingen mit ihrer eigenen Frequenz.

Diese zwei Arten von Schwingungen wechselwirken miteinander, wobei die Intensität ihrer Wechselwirkung durch die Spannung zwischen den Graphen-Nanobändern und dem Metallkontakt auf der Rückseite des Siliziumdioxid-Substrats gesteuert werden kann. Durch die auf diese Weise erzielbare starke Wechselwirkung zwischen den erzeugten Plasmaschwingungen und der äußeren elektromagnetischen Strahlung kann dieses System als eine Art Schalter fungieren, mit dem sich eine elektromagnetische Welle sehr schnell ein- und ausschalten lässt.

Die Funktionsweise dieses Schalters wurde bei Frequenzen von einigen Terahertz demonstriert. Die entsprechenden Strahlungswellen sind sehr lang, weit länger als solche, die das menschliche Auge sehen kann. Ein wichtiges Merkmal der neuen Struktur ist, dass sie diese elektromagnetischen Strahlen in einem Bereich bündeln kann, der viel kleiner ist als die Wellenlängen. "Wir sehen darin eine wesentliche Voraussetzung und realistische Möglichkeit für die Entwicklung neuartiger spektroskopischer Methoden mit ultrahoher Auflösung", erläutert Mikhailov.

Auch darüber hinaus haben die Ergebnisse der Forschergruppe um Nash, Faist und Mikhailov das Potential, die Grundlage für die Entwicklung einer Reihe weiterer technologisch wichtiger Komponenten zu sein. So ist die Entwicklung einer völlig neuen Laserquelle für viele verschiedene Anwendungen u. a. in der Sicherheitstechnik, der Medizin, der Telekommunikation oder der Gas-Sensorik das übergeordnete Ziel des europäischen GOSFEL-Projekts (www.gosfel.eu), in dessen Rahmen Mikhailov und Kollegen ihre jetzt in der renommierten Fachzeitschrift Nature Communications veröffentlichten Ergebnisse erarbeitet haben.

Die Gruppe um Mikhailov am Augsburger Lehrstuhl für Theoretische Physik II arbeitet zugleich auch an "Graphene Flagship", einem weiteren großen europäischen Forschungsprogramm mit, in dessen Rahmen sie nicht-lineare elektrodynamische Eigenschaften von Graphen untersucht, um die Voraussetzungen für die Verwendung von Graphen in verschiedenen elektronischen und optoelektronischen Bauteilen zu schaffen.


Publikation:
Peter Q. Liu, Isaac J. Luxmoore, Sergey A. Mikhailov, Nadja A. Savostianova, Federico Valmorra, Jerome Faist, Geoffrey R. Nash, “Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons”, Nature Communications 6, 8969 (2015).
http://www.nature.com/ncomms/2015/151120/ncomms9969/full/ncomms9969.html


Weitere Informationen:

• zum FET Open Project GOSFEL:
http://www.gosfel.eu

• zu Graphene Flagship:
http://www.graphene-flagship.eu
http://idw-online.de/de/news593143


Ansprechpartner:
PD Dr. Sergey Mikhailov
Institut für Physik der Universität Augsburg
86135 Augsburg

Telefon +49(0)821-598-3255
sergey.mikhailov@physik.uni-augsburg.de
http://www.physik.uni-augsburg.de/lehrstuehle/theo2/team/mikhailov/

Weitere Informationen:

http://www.nature.com/ncomms/2015/151120/ncomms9969/full/ncomms9969.html
http://www.gosfel.eu

Klaus P. Prem | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise