Eigenschaften von Magnetmaterialien gezielt ändern

In der Simulation breiten sich magnetische Signale entlang der Domänenwände (DW) in wenigen Nanosekunden (ns) aus. In zehn Nanosekunden reicht ein Lichtstrahl drei Meter weit. Die Signale verhalten sich wellenartig, die anfangs hohe Amplitude wird schnell kleiner. Foto/Copyright: McCord

Das Aufteilen eines Magnetmaterials in Domänen hat große energetische Vorteile. Im Fokus des Forschungsteams der Universität Kiel stehen jedoch die Wände, die Domänen voneinander abgrenzen.

„Die Position und die Dichte dieser Wände bestimmen die Eigenschaften der gesamten magnetischen Schicht“, sagt Jeffrey McCord, Professor für Nanoskalige magnetische Werkstoffe mit dem Schwerpunkt magnetische Domänen. „Die Positionen von Domänenwänden gezielt einstellen zu können, hat also eine große Auswirkung – es ist allerdings nicht ganz einfach“, so der Leiter des Forschungsteams.

Um Domänen und Domänenwände gezielt einstellen zu können, nutzte das Forschungsteam eine spezielle Methode: Die Wissenschaftlerinnen und Wissenschaftler bestrahlten magnetische Mehrlagenschichten mit Ionen. Domänenwandstrukturen, die normalerweise willkürlich angeordnet sind, können damit ganz nach Wunsch in das magnetische Material „eingeprägt“ werden.

„Dadurch können magnetische Eigenschaften kontrolliert geändert werden, und zwar reproduzierbar. Wir können damit die Lage der Domänenwände selbst bestimmen und eigene Domänenwandgitter mit Millionen von 50 Nanometer breiten Wänden bauen. Wir erhalten so magnetische Materialien, die ein komplett anderes Verhalten gegenüber äußeren magnetischen Feldern aufweisen“, freut sich McCord.

„Überraschend war für uns, wie gut sich Spinwellen in den Domänenwänden ausbreiten und durch sie gelenkt werden“, betont McCord. Spins sind magnetische Momente von Elektronen, die sich auch dazu eignen, Informationen zu verarbeiten und zu kodieren. Die Erkenntnisse der Kieler Forschenden könnten daher langfristig für eine Datenübertragung interessant sein, die nicht über Elektronen funktioniert, sondern über Magnonen – also eine magnetische Informationsübermittlung. „Mit gebauten Domänenwandstrukturen könnten wir Datenströme schneller und mit geringerem Energieaufwand lenken“, so McCord. Weitere Anwendungsmöglichkeiten sind besonders sensible magnetische Sensoren.

Originalpublikation:
J. Trützschler, K. Sentosun, B. Mozooni, R. Mattheis, J. McCord. Magnetic domain wall gratings for magnetization reversal tuning and confined dynamic mode localization, Scientific Reports 6, 30761 (2016) DOI: 10.1038/srep30761
www.nature.com/articles/srep30761

Bildmaterial steht zum Download bereit:

www.uni-kiel.de/download/pm/2016/2016-387-1.jpg
In der Simulation breiten sich magnetische Signale entlang der Domänenwände (DW) in wenigen Nanosekunden (ns) aus. In zehn Nanosekunden reicht ein Lichtstrahl drei Meter weit. Die Signale verhalten sich wellenartig, die anfangs hohe Amplitude wird schnell kleiner.
Foto/Copyright: McCord

www.uni-kiel.de/download/pm/2016/2016-387-2.jpg
Seit 2011 arbeitet Jeffrey McCord als Professor für Nanoskalige magnetische Werkstoffe mit dem Schwerpunkt magnetische Domänen an der Christian-Albrechts-Universität zu Kiel.
Foto/Copyright: Denis Schimmelpfennig/CAU

Kontakt:
Professor Jeffrey McCord
Institut für Materialwissenschaften
Professur für Nanoskalige magnetische Werkstoffe
Tel.: 0431/880 6123
E-Mail: jemc@tf.uni-kiel.de

Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt „Nanowissenschaften und Oberflächenforschung“ (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische, Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Materialwissenschaft, Chemie, Physik, Biologie, Elektrotechnik, Informatik, Lebensmitteltechnologie und verschiedenen medizinischen Fächern zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf www.kinsis.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Text: Julia Siekmann
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de
Twitter: www.twitter.com/kieluni, Facebook: www.facebook.com/kieluni

Media Contact

Dr. Boris Pawlowski Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ereignisbündel verstärken Klimafolgen

Was passiert in Ostfriesland, wenn Sturmfluten und Starkregenereignisse gleichzeitig und über einen längeren Zeitraum auftreten? Welche Auswirkungen haben diese Ereignisse auf den Insel- und Küstenschutz, die Binnenentwässerung, die Süßwasserversorgung und…

Essen, Kontaktpflege oder Erkunden

Wie das Gehirn zwischen Verhaltensweisen umschaltet. Wie schaltet unser Gehirn zwischen verschiedenen Verhaltensweisen um? Eine aktuelle Studie liefert nun eine erste Antwort auf diese zentrale neurowissenschaftliche Frage. Die Forschenden untersuchten…

Strukturwandel-Projekt will Laserfusion näher an die Anwendung bringen

Die Fusion von Wasserstoffkernen gilt als vielversprechende Option, auf der Erde eine ergiebige und nachhaltige Energiequelle zu schaffen. Das Problem? Um den Prozess der Kernfusion in Gang zu setzen, sind…

Partner & Förderer