Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durchbruch in der Elektronenmikroskopie - Dritte Dimension aus einer Aufnahme rekonstruiert

22.09.2014

Stellen Sie sich vor, Sie wollten anhand eines einzelnen Fotos von der Vorderseite eines Hauses herausfinden, wie das Gebäude von hinten aussieht, ob es irgendwelche Anbauten oder Schäden am Mauerwerk gibt und wie der Keller aufgeteilt ist. Unmöglich? Nicht in der Nanowelt.

Wissenschaftler aus Jülich und Xian haben eine neue Methode entwickelt, mit der sich Kristallstrukturen in allen drei Dimensionen atomgenau rekonstruieren lassen. Sie verwendeten für dieses Kunststück die Aufnahme eines ultrahoch auflösenden Elektronenmikroskops. Die Ergebnisse sind in der aktuellen Ausgabe der Fachzeitschrift Nature Materials erschienen (DOI: 10.1038/nmat4087).


3D-Rekonstruktion eines Nanokristalls – hier eines Magnesiumoxid-Nanokristalls (unten) – aus einer einzigen elektronenmikroskopische Aufnahme. Rote Kugeln stehen für Magnesium, blaue für Sauerstoff.

Quelle: Forschungszentrum Jülich

Das Verfahren eignet sich insbesondere auch, um strahlungsempfindliche Proben vollständig räumlich zu erfassen, die durch den energiereichen Messstrahl rasch zerstört werden. Bei Nanoteilchen bestimmt die Oberfläche die physikalischen und technischen Eigenschaften weit mehr als bei anderen Stoffen. Die Effizienz von Katalysatoren etwa hängt stark von der Form des verwendeten Materials und seiner Oberflächenbeschaffenheit ab.

Physiker und Materialforscher sind deshalb daran interessiert, den Aufbau von Nanomaterialien von allen Seiten und über mehrere Lagen hinweg atomgenau bestimmen zu können. Bisher wurden dafür ganze Untersuchungsreihen aus unterschiedlichen Perspektiven benötigt. Doch Wissenschaftler des Forschungszentrums Jülich, des Ernst Ruska-Centrums für Mikroskopie und Spektroskopie mit Elektronen (ER-C) sowie der chinesischen Xian Jiaotong Universität haben es nun zum ersten Mal geschafft, die räumliche Anordnung der Atome ausgehend von einer einzigen elektronenmikroskopischen Aufnahme zu errechnen.

Ihre Methode bietet große Vorteile: Mit ihr können auch strahlungsempfindliche Proben untersucht werden, die durch den energiereichen Elektronenstrahl der Mikroskope rasch zerstört werden. Die vergleichsweise kurze Aufnahmedauer könnte es künftig sogar ermöglichen, kurzlebige Zwischenschritte chemischer Reaktionen zu beobachten. Darüber hinaus erlaubt es das „sanfte“ Messverfahren, nicht nur schwere, sondern auch leichte chemische Elemente nachzuweisen -- etwa Sauerstoff, der in vielen technologisch bedeutsamen Materialien eine wichtige Funktion innehat.

„Dreidimensionale Informationen aus einer einzigen, zweidimensionalen Aufnahme zu gewinnen, scheint auf den ersten Blick unmöglich. Doch es ist möglich, weil wir keine simple zweidimensionale Projektion der dreidimensionalen Probe erhalten, sondern das Experiment quantenmechanischen Regeln folgt “, erläutert Prof. Chunlin Jia, der am Jülicher Peter Grünberg Institut, Bereich Mikrostrukturforschung (PGI-5), am ER-C wie auch an der Jiaotong Universität forscht. „Auf dem Weg durch das Kristallgitter fungiert die Elektronenwelle des Mikroskops als hochempfindlicher Detektor für Atome und wird von jedem einzelnen Atom beeinflusst. Entscheidend ist, dass es tatsächlich einen Unterschied macht, ob die Wellenfront zu Beginn oder am Ende ihres Wegs durch den Kristall auf ein Atom trifft.“

Für das neue 3D-Messverfahren wird die dünne kristalline Probe – in diesem Fall Magnesiumoxid – so im Mikroskop positioniert, dass die Atome an den Knotenpunkten des Kristallgitters genau übereinander liegen und Säulen entlang der Beobachtungsachse bilden. Diese Atomsäulen sind später nur als helle Punkte auf der mikroskopischen Aufnahme sichtbar. Ein spezieller Abbildungsmodus verbessert noch das Signal-Hintergrund-Verhältnis. So werden feine Unterschiede sichtbar, die den Forschern verraten, wo sich die einzelnen Atome in den Säulen entlang der Strahlrichtung befinden.

Für die Rekonstruktion der räumlichen Struktur vergleichen die Wissenschaftler die Aufnahme mit Berechnungen am Computer. Die Computersimulationen vermitteln einen Eindruck, wie eine mikroskopische Abbildung eines perfekten flachen Magnesiumkristalloxids aussehen würde. Anschließend passen sie den Modell-Kristall Schritt für Schritt an, bis die errechnete Abbildung mit der elektronenmikroskopischen Aufnahme optimal übereinstimmt.

Um die Eindeutigkeit der erhaltenen Ergebnisse zu belegen, haben die Wissenschaftler umfangreiche statistische Tests durchgeführt. Diese ergaben auch, dass die Methode nicht nur empfindlich genug ist, um jedes einzelne Atom nachzuweisen, sondern auch zwischen den beiden Elementen des Kristalls, Magnesium und Sauerstoff, unterscheiden kann.

Original-Veröffentlichung:
Determination of the 3D shape of a nanoscale crystal with atomic resolution from a single image;
C. L. Jia, S. B. Mi, J. Barthel, D. W. Wang, R. E. Dunin-Borkowski,
K. W. Urban, A. Thust;
Nature Materials Advance Online Publication (AOP) 21.9.2014, DOI: 10.1038/nmat4087

Weitere Informationen:
Forschungszentrum Jülich, Peter Grünberg Institut - Mikrostrukturforschung (PGI-5): http://www.fz-juelich.de/pgi/pgi-5/DE/Home/home_node.html
Ernst Ruska-Centrum: http://www.er-c.org

Ansprechpartner:
Prof. Chunlin Jia, Forschungszentrum Jülich, Peter Grünberg Institut - Mikrostrukturforschung (PGI-5) und Ernst Ruska-Centrum
Tel. 02461 61-2408, E-Mail: c.jia@fz-juelich.de

Dr. Andreas Thust, Forschungszentrum Jülich, Peter Grünberg Institut - Mikrostrukturforschung (PGI-5) und Ernst Ruska-Centrum
Tel. 02461 61-6644, E-Mail: a.thust@fz-juelich.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Tobias Schlößer, Unternehmenskommunikation, Forschungszentrum Jülich
Tel.: 02461 61-4771, E-Mail: t.schloesser@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2014/14-09-21jia.ht...

Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beschichtung lässt Muscheln abrutschen
18.08.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie