Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durchbruch in der Elektronenmikroskopie - Dritte Dimension aus einer Aufnahme rekonstruiert

22.09.2014

Stellen Sie sich vor, Sie wollten anhand eines einzelnen Fotos von der Vorderseite eines Hauses herausfinden, wie das Gebäude von hinten aussieht, ob es irgendwelche Anbauten oder Schäden am Mauerwerk gibt und wie der Keller aufgeteilt ist. Unmöglich? Nicht in der Nanowelt.

Wissenschaftler aus Jülich und Xian haben eine neue Methode entwickelt, mit der sich Kristallstrukturen in allen drei Dimensionen atomgenau rekonstruieren lassen. Sie verwendeten für dieses Kunststück die Aufnahme eines ultrahoch auflösenden Elektronenmikroskops. Die Ergebnisse sind in der aktuellen Ausgabe der Fachzeitschrift Nature Materials erschienen (DOI: 10.1038/nmat4087).


3D-Rekonstruktion eines Nanokristalls – hier eines Magnesiumoxid-Nanokristalls (unten) – aus einer einzigen elektronenmikroskopische Aufnahme. Rote Kugeln stehen für Magnesium, blaue für Sauerstoff.

Quelle: Forschungszentrum Jülich

Das Verfahren eignet sich insbesondere auch, um strahlungsempfindliche Proben vollständig räumlich zu erfassen, die durch den energiereichen Messstrahl rasch zerstört werden. Bei Nanoteilchen bestimmt die Oberfläche die physikalischen und technischen Eigenschaften weit mehr als bei anderen Stoffen. Die Effizienz von Katalysatoren etwa hängt stark von der Form des verwendeten Materials und seiner Oberflächenbeschaffenheit ab.

Physiker und Materialforscher sind deshalb daran interessiert, den Aufbau von Nanomaterialien von allen Seiten und über mehrere Lagen hinweg atomgenau bestimmen zu können. Bisher wurden dafür ganze Untersuchungsreihen aus unterschiedlichen Perspektiven benötigt. Doch Wissenschaftler des Forschungszentrums Jülich, des Ernst Ruska-Centrums für Mikroskopie und Spektroskopie mit Elektronen (ER-C) sowie der chinesischen Xian Jiaotong Universität haben es nun zum ersten Mal geschafft, die räumliche Anordnung der Atome ausgehend von einer einzigen elektronenmikroskopischen Aufnahme zu errechnen.

Ihre Methode bietet große Vorteile: Mit ihr können auch strahlungsempfindliche Proben untersucht werden, die durch den energiereichen Elektronenstrahl der Mikroskope rasch zerstört werden. Die vergleichsweise kurze Aufnahmedauer könnte es künftig sogar ermöglichen, kurzlebige Zwischenschritte chemischer Reaktionen zu beobachten. Darüber hinaus erlaubt es das „sanfte“ Messverfahren, nicht nur schwere, sondern auch leichte chemische Elemente nachzuweisen -- etwa Sauerstoff, der in vielen technologisch bedeutsamen Materialien eine wichtige Funktion innehat.

„Dreidimensionale Informationen aus einer einzigen, zweidimensionalen Aufnahme zu gewinnen, scheint auf den ersten Blick unmöglich. Doch es ist möglich, weil wir keine simple zweidimensionale Projektion der dreidimensionalen Probe erhalten, sondern das Experiment quantenmechanischen Regeln folgt “, erläutert Prof. Chunlin Jia, der am Jülicher Peter Grünberg Institut, Bereich Mikrostrukturforschung (PGI-5), am ER-C wie auch an der Jiaotong Universität forscht. „Auf dem Weg durch das Kristallgitter fungiert die Elektronenwelle des Mikroskops als hochempfindlicher Detektor für Atome und wird von jedem einzelnen Atom beeinflusst. Entscheidend ist, dass es tatsächlich einen Unterschied macht, ob die Wellenfront zu Beginn oder am Ende ihres Wegs durch den Kristall auf ein Atom trifft.“

Für das neue 3D-Messverfahren wird die dünne kristalline Probe – in diesem Fall Magnesiumoxid – so im Mikroskop positioniert, dass die Atome an den Knotenpunkten des Kristallgitters genau übereinander liegen und Säulen entlang der Beobachtungsachse bilden. Diese Atomsäulen sind später nur als helle Punkte auf der mikroskopischen Aufnahme sichtbar. Ein spezieller Abbildungsmodus verbessert noch das Signal-Hintergrund-Verhältnis. So werden feine Unterschiede sichtbar, die den Forschern verraten, wo sich die einzelnen Atome in den Säulen entlang der Strahlrichtung befinden.

Für die Rekonstruktion der räumlichen Struktur vergleichen die Wissenschaftler die Aufnahme mit Berechnungen am Computer. Die Computersimulationen vermitteln einen Eindruck, wie eine mikroskopische Abbildung eines perfekten flachen Magnesiumkristalloxids aussehen würde. Anschließend passen sie den Modell-Kristall Schritt für Schritt an, bis die errechnete Abbildung mit der elektronenmikroskopischen Aufnahme optimal übereinstimmt.

Um die Eindeutigkeit der erhaltenen Ergebnisse zu belegen, haben die Wissenschaftler umfangreiche statistische Tests durchgeführt. Diese ergaben auch, dass die Methode nicht nur empfindlich genug ist, um jedes einzelne Atom nachzuweisen, sondern auch zwischen den beiden Elementen des Kristalls, Magnesium und Sauerstoff, unterscheiden kann.

Original-Veröffentlichung:
Determination of the 3D shape of a nanoscale crystal with atomic resolution from a single image;
C. L. Jia, S. B. Mi, J. Barthel, D. W. Wang, R. E. Dunin-Borkowski,
K. W. Urban, A. Thust;
Nature Materials Advance Online Publication (AOP) 21.9.2014, DOI: 10.1038/nmat4087

Weitere Informationen:
Forschungszentrum Jülich, Peter Grünberg Institut - Mikrostrukturforschung (PGI-5): http://www.fz-juelich.de/pgi/pgi-5/DE/Home/home_node.html
Ernst Ruska-Centrum: http://www.er-c.org

Ansprechpartner:
Prof. Chunlin Jia, Forschungszentrum Jülich, Peter Grünberg Institut - Mikrostrukturforschung (PGI-5) und Ernst Ruska-Centrum
Tel. 02461 61-2408, E-Mail: c.jia@fz-juelich.de

Dr. Andreas Thust, Forschungszentrum Jülich, Peter Grünberg Institut - Mikrostrukturforschung (PGI-5) und Ernst Ruska-Centrum
Tel. 02461 61-6644, E-Mail: a.thust@fz-juelich.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Tobias Schlößer, Unternehmenskommunikation, Forschungszentrum Jülich
Tel.: 02461 61-4771, E-Mail: t.schloesser@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2014/14-09-21jia.ht...

Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Biegsame Touchscreens: Neues Herstellungsverfahren für transparente Elektronik verbessert
28.03.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie