Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Quanten-Strom im Graphen

20.05.2016

Wenn der Strom in Portionen fließt: Berechnungen der TU Wien liefern Erkenntnisse über die Quanten-Eigenschaften des Kohlenstoff-Materials Graphen.

Dass Graphen ganz bemerkenswerte Eigenschaften hat, ist bekannt. Bereits 2010 wurde der Nobelpreis für die Entdeckung dieses ganz besonderen Materials vergeben, das aus einer Schicht wabenförmig angeordneter Kohlenstoffatome besteht.


Eine Elektronenwelle im Graphen

TU Wien


Florian Libisch erklärt die Struktur von Graphen

TU Wien

Doch je weiter die Graphen-Forschung fortschreitet, umso mehr bemerkenswerte Effekte kann man dem Material entlocken. Nun gelang es einem internationalen Forschungsteam mit Beteiligung der TU Wien, das Verhalten der Elektronen zu erklären, die sich durch enge Stellen in einer Graphen-Schicht bewegen. Die Ergebnisse wurden nun im Fachjournal „Nature Communications“ veröffentlicht.

Das Elektron ist eine Welle

„Wenn Strom durch Graphen fließt, dann sollte man sich die Elektronen nicht vorstellen wie kleine Kugeln, die durch das Material rollen“, sagt Florian Libisch vom Institut für Theoretische Physik der TU Wien, der den theoretischen Teil des Projektes leitete.

Die Elektronen schwappen als langgestreckte Wellenfront durch das Material, die Wellenlänge des Elektrons kann hundertfach größer sein als der Abstand zwischen den Kohlenstoffatomen. „Das Elektron sitzt nicht auf einem bestimmten Kohlenstoffatom, es befindet sich gewissermaßen überall gleichzeitig“, erklärt Libisch.

Untersucht wurde das Verhalten der Elektronen, die sie sich durch Engstellen im Graphen hindurchzwängen müssen. „Je schmäler diese Verengung wird, umso weniger Strom fließt hindurch“, sagt Florian Libisch. „Allerdings zeigt sich, dass der Zusammenhang zwischen dem Stromfluss, dem Durchmesser der Engstelle und der Energie der Elektronen ziemlich kompliziert ist. An bestimmten Stellen weist er charakteristische Sprünge auf, das ist ein klarer Hinweis auf Quanteneffekte.“

Ist die Wellenlänge des Elektrons so groß, dass sie nicht durch die Engstelle hindurchpasst, ist der Stromfluss sehr gering. „Wenn man die Energie des Elektrons erhöht, dann wird seine Wellenlänge kleiner“, erklärt Libisch. „Irgendwann passt dann eine Wellenlänge durch die Engstelle, dann zwei, dann drei – dadurch erhöht sich auch der Stromfluss in charakteristischen Stufen.“ Der Stromfluss wächst nicht kontinuierlich, er ist quantisiert.

Theorie und Experiment

Dieser Effekt lässt sich auch in anderen Materialien beobachten – ihn in Graphen aufzuspüren war aber bedeutend schwieriger, weil es durch die ungewöhnlichen elektronischen Eigenschaften des Materials zu verschiedenen zusätzlichen Effekten kommt. Die Experimente wurden an der RWTH Aachen in der Gruppe von Prof. Christoph Stampfer durchgeführt, theoretische Rechnungen und Computersimulationen in Wien von Larisa Chizhova und Florian Libisch in der Gruppe von Prof. Joachim Burgdörfer.

Beides ist äußerst herausfordernd: Für die Experimente musste man die Graphen-Stücke nanometergenau in Form bringen, stabilisiert wurden sie, indem man das Graphen zwischen Atomlagen von hexagonalem Bornitrid einschloss.

Ähnlich herausfordernd ist es, die Experimente am Computer zu simulieren. „Ein frei bewegliches Elektron in der Graphen-Schicht kann so viele verschiedene Quantenzustände annehmen, wie es dort Kohlenstoffatome gibt“, sagt Florian Libisch. „In unserem Fall sind das über zehn Millionen.“ Das macht die Rechnungen extrem aufwändig – will man etwa ein Elektron in einem Wasserstoffatom beschreiben, kommt man mit einigen wenigen Quantenzuständen gut aus. Das Team vom Institut für Theoretische Physik entwickelte daher Computercodes, die am Hochleistungsrechner VSC3 an der TU Wien auf hunderten Prozessoren gleichzeitig laufen.

Randzustände

Eine wichtige Rolle für das Verhalten von Graphen spielt der Randbereich des Materials: „Nachdem die Atome in einer sechseckigen Wabenform angeordnet sind, ist der Rand niemals eine völlig gerade Linie, er ist auf atomarer Skala betrachtet immer gezackt“, sagt Florian Libisch. Die Elektronen können dort spezielle Randzustände einnehmen, die einen wichtigen Einfluss auf die elektronischen Eigenschaften des Materials haben.

„Nur mit Computersimulationen auf extrem großer Skala auf den größten heute verfügbaren Computerclustern können wir die experimentell hergestellten Graphenstrukturen detailliert simulieren, und diesen Randzuständen auf die Spur kommen“, sagt Libisch. „Wie die augezeichnete Übereinstimmung von Rechnung und Experiment zeigt, ist uns das gut gelungen.“

Die Entdeckung von Graphen öffnete die Tür zur Erforschung ganz unterschiedlicher ultradünner Materialien, die nur aus einzelnen Atomlagen bestehen. Speziell die Kombination dieser Schichten, zum Beispiel wie hier Graphen mit hexagonalem Bornitrid – verspricht in Zukunft spannende Erkenntnisse und neue Anwendungen im Bereich der Nanoelektronik. „Bedenkt man, dass die Größe der Transistoren in der heutigen Elektronik schon im zwanzig-Nanometer Bereich liegt, wird man für die Elektronik von morgen auf jeden Fall viel über Quantenphysik wissen müssen“, ist Libisch sicher.

Originalpublikation: “Size quantization of Dirac fermions in graphene constrictions”, nature Communications, DOI: 10.1038/NCOMMS11528

Rückfragehinweis:
Dr. Florian Libisch
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13608
florian.libisch@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise