Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bronze-Matrjoschka: hocheffiziente Katalysatoren und Nanoröhrchen mit ungewöhnlicher Symmetrie

07.02.2012
Eine Puppe in der Puppe und noch eine drumherum – so erklärt Thomas Fässler seine Moleküle: Er packt ein Atom in einem Käfig in noch ein weiteres Atomgerüst.

Mit ihrer großen Oberfläche könnten solche Strukturen als hocheffiziente Katalysatoren dienen. Wie bei dem russischen Holzspielzeug sitzt ganz innen drin ein einzelnes kleines Zinnatom, eingepackt in eine Hülle aus zwölf Kupferatomen, und diese ist nochmals umgeben von weiteren 20 Zinnatomen.


Metallcluster, aufgebaut wie eine russische Matrjoschka. Foto: TUM

In der Arbeitsgruppe von Professor Fässler am Institut für Anorganische Chemie der Technischen Universität München (TUM) gelangen solche aus drei Schalen aufgebauten räumlichen Strukturen als isolierte Metallcluster in Legierungen zum ersten Mal.

Faszinierend sind vor allem die Bilder, mit denen die Forscher diese Verbindungen und ihre Eigenschaften erläutern – im Labor ist das ein eher unspektakuläres, schwarz-graues, feines Pulver, aber die Strukturmodelle sind farbig und in den verschiedensten verschachtelten Formen. Was man damit machen kann? Mit ihrer großen Oberfläche sind solche Pulver interessant als Vorstufen für Katalysatoren, die Wasserstoff übertragen. Ähnliche Gerüste aus Silicium könnten in Solarzellen das Sonnenlicht noch effektiver einzufangen.

Metalle stellt man sich als gleichmäßige, von der Struktur her unspektakuläre Werkstoffe vor. Ganz anders die Metallverbindungen an Fässlers Institut: Auf dem Tisch stapeln sich die verschiedensten Käfigmodelle in bunten Farben, mit gelben Kugeln, die Kupferatome symbolisieren, und blauen für Zinn. Die Parallelität zu den Kohlenstoffbällen, die als „Buckyballs“ Furore machten, ist offensichtlich. Auch hier gibt es geometrische Formen, aus Dreiecken, Fünf- und Sechsecken zusammengesetzte Körper, jedoch nicht aus Kohlenstoff: Auch schwerere Metallatome wie Zinn und Blei können solche isolierten Käfigstrukturen bilden.

„Es sind grundsätzlich andere als die gewohnten Formen von Legierungen, die uns beschäftigen“, sagt Thomas Fässler. Metalllegierungen wie Bronze, jene schon früh entdeckte Mischung aus Kupfer und Zinn, nach der eine ganze Epoche benannt wurde, sind kristallin aufgebaut; die Atome dieser beiden Komponenten sind im ganzen Kristall regelmäßig verteilt und dicht gepackt.

Ganz anders die neuen Bronzen aus dem Hause Fässler: Im Labor schmolz die Doktorandin Saskia Stegmaier besonders reine Formen von Kupferdraht und Zinnkörnchen zusammen, allerdings unter besonderen Bedingungen: vor Luft und Feuchtigkeit geschützt in einer Argonatmosphäre. Die so erhaltene Bronze schweißte sie dann zusammen mit einem Alkalimetall wie Kalium in eine Ampulle aus Tantal ein. Dieses Metall schmilzt erst bei etwa 3.000 Grad Celsius und eignet sich deshalb besonders, um darin andere Metalle ungestört miteinander in Kontakt zu bringen.

So entstanden die neuen, wie die russische Holzpuppe ineinander geschachtelten Metallcluster: Beim Erhitzen der Bronze mit Kalium oder Natrium auf 600 bis 800 Grad Celsius wirken die Alkalimetalle zunächst wie eine Schere, die das Gitter der Legierung auftrennt, sich dann zwischen die Stücke drängt und kleine isolierte Atomcluster stabilisiert. Denn eigentlich sind diese Clusterteilchen gar nicht in der Lage, sich regelmäßig und dicht zu stapeln und damit Kristalle zu bilden. Sie sind als Fünfecke aus insgesamt 20 Zinnatomen zusammengebaut, daraus lässt sich kein regelmäßig wiederkehrendes Muster aufbauen. Erst „mit etwas Schummeln“ und den Kaliumatomen als „Klebstoff“ dazwischen entsteht auch daraus ein normal anmutender Kristall. Für die Entdeckung ähnlicher, sogenannter Quasikristalle mit fünfzähliger Symmetrie, erhielt der Israeli Dan Shechtman im vorigen Jahr den Chemie-Nobelpreis.

„Unsere Cluster sind kleine Einheiten, quasi Atomhaufen ohne Verbindung zu ihren Nachbarn“. Damit sind sie ideal für katalytische Anwendungen: „Weil sie alle gleich groß sind“, erklärt Fässler, „können sie bestimmte chemische Reaktionen viel exakter steuern als klassische Katalysatoren“. Ein Beispiel sind Hydrierungsreaktionen, bei denen Wasserstoffatome an organische Molekülketten mit Sauerstoffatomen angedockt werden, etwa zur Synthese von Aromastoffen. Üblich sind hier teure Edelmetalle wie Rhodium – aber polare neuartige Legierungen aus Magnesium, Cobalt und Zinn können die gleichen Erfolge liefern. „Was wir für effiziente Reaktionen brauchen, ist eine sehr große Oberfläche des Katalysators.“ Die bekommt man auf klassische Weise, wenn man Lösungen zweier Metallsalze zusammenkippt, damit aus der Lösung feinste Nanoteilchen ausfallen. „Das ergibt aber ein ganzes Spektrum von Teilchengrößen“, erläutert Fässler. „Mit Metallclustern könnten wir den richtigen Katalysator quasi maßschneidern.“

In ihrem Reaktionsgefäß fanden Stegmaier und Fässler aber noch mehr: Neben den Clustern sahen sie ein faserartiges Material, wie dünne Nadeln, die sich an den Enden etwas biegen ließen. „Wir haben geahnt“, sagt Stegmaier, „dass da noch etwas Spannendes drin sein muss“. Inzwischen konnte die Ausbeute dieser Fasern verbessert werden – durch Natrium als Schere zum Auftrennen der Bronze. Dabei entstehen anstelle von Kugeln nun mehrschalige Röhren: in der Mitte ein Strang von Zinnatomen, darum eine Röhre aus Kupferatomen, um diese wieder ein Röhrchen aus Zinnatomen. Wie die hohlen Matrjoschka-Moleküle an Buckyballs erinnern, so erinnern die neuartigen Fasern mit ihren Röhren an die Kohlestoff-Nanoröhrchen. Entsprechend könnten solche Fasern einmal als molekulare Drähte mit den unterschiedlichsten elektrischen Eigenschaften Anwendung finden.

Originalpublikationen:

S. Stegmaier, T. F. Fässler
A Bronze Matryoshka – The Discrete Intermetalloid Cluster [Sn@Cu12@Sn20]12– in the Ternary Phases A12Cu12Sn21 (A = Na, K)
J. Am. Chem. Soc. 2011, 133, 19758–19768 – DOI: 10.1021/ja205934p

S. Stegmaier, T. F. Fässler
Na2.8Cu5Sn5.6 – A Crystalline Alloy Featuring Intermetalloid 1∞{Sn0.6@Cu5@Sn5} Double-Wall Nano Rods with Five-Fold Symmetry
Angew. Chem, Early View Online, 1. Feb. 2012 – DOI: 10.1002/ange.201107985

Kontakt:

Prof. Dr. Thomas F. Fässler
Technische Universität München
Lehrstuhl für Anorganische Chemie mit Schwerpunkt Neue Materialien
Lichtenbergstr. 4, 85748 Garching, Germany
Tel. +49 89 289 13131
E-Mail Thomas.Faessler@lrz.tu-muenchen.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tu-muenchen.de
http://pubs.acs.org/doi/abs/10.1021/ja205934p
http://www.ch.tum.de/faessler/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ventile für winzige Teilchen
23.05.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Advanced Materials: Glas wie Kunststoff bearbeiten
18.05.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Was einen guten Katalysator ausmacht

24.05.2018 | Biowissenschaften Chemie

Superkondensatoren aus Holzbestandteilen

24.05.2018 | Biowissenschaften Chemie

Neue Schaltschrank-Plattform für die Energiewelt

24.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics