Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Brennstoffzellen mit PFIA-Membranen

19.12.2016

Experimente an BESSY II zum Wassermanagement geben Hinweise auf weitere Optimierung von Brennstoffzellen 

Ein Team am Helmholtz-Zentrum Berlin (HZB) und eine Forschergruppe der Firma 3M haben untersucht, wie eine Protonen-Austauschmembran aus so genannten PFIA-Molekülen (Perfluoroimid-Säure) funktioniert. Mit Experimenten an der Infrarot-Beamline an der Synchrotronquelle BESSY II konnten sie zeigen, wie PFIA-Moleküle selbst bei geringer Feuchtigkeit Wasser einlagern und transportieren können. Dies erklärt, warum PFIA-Membranen – anders als die bislang am meisten genutzten NAFIONTM-Membranen – auch bei höheren Temperaturen und trockenen Bedingungen gut funktionieren.


Die PFIA-Moleküle ordnen sich mit ihrem wasserabweisenden Rückgrat (schwarze Linie) so an, dass die wasserfreundlichen Seitenketten zueinander zeigen und nanometergroße Wasserkanäle bilden: Jede Seitenkette besitzt dabei zwei Andockstellen (gelbe und rote Kreise) für Wasserstoff-Ionen (H+). Diese Andockstellen bestehen aus Säuregruppen, die in der Lupe gezeigt werden. Bild: Heike Cords/HZB

Brennstoffzellen wandeln die chemische Energie von Wasserstoff oder Methan in elektrische Energie um. Die Technologie ist nicht nur effizient, sondern auch sauber, denn als „Abgas“ entsteht nur Wasser. Im Kern besteht die Brennstoffzelle aus einer Protonen-Austauschmembran, die nur die winzigen Wasserstoff-Ionen (Protonen) durchlässt, die zur Kathode wandern.

Sauerstoff-Atome und Wasserstoffatome blockiert sie. Bislang werden vor allem NAFION-Membranen eingesetzt, die aber nur bei einer bestimmten Feuchtigkeit und Temperaturen unterhalb von etwa 90°C funktionieren. Dies begrenzt jedoch bisher den Einsatzbereich von Brennstoffzellen.

Daher wird nach Alternativen gesucht. Seit einiger Zeit hat die Firma 3M eine preisgünstige Protonen-Austauschmembran, entwickelt, die mit PFIA abgekürzt wird: PFIA steht für Perfluoroimid-Säure. PFIA-Membranen können auch bereits in Brennstoffzellen eingesetzt werden. Sowohl NAFION- als auch PFIA-Moleküle besitzen ein wasserabweisendes “Rückgrat“, an das wasserliebende Seitenketten angeheftet sind. Während die Seitenketten bei NAFION nur eine Andockstelle für Protonen bieten, besitzen die PFIA-Seitenketten zwei solcher Andockstellen.

Dadurch gibt es je Seitenkette einen zusätzlichen Platz für ein Proton. Außerdem können PFIA-Moleküle von selbst nanometergroße Kanäle bilden, in denen Wasser gebunden oder befördert werden kann. Wie aber dieses Wassermanagement in einer PFIA-Membran genau abläuft, war bisher nicht bekannt. Dabei ist dieses Wassermanagement von entscheidender Bedeutung für die Leistungsfähigkeit einer Brennstoffzelle, die nie zu feucht aber auch niemals zu trocken werden darf.

Nun hat eine Gruppe am HZB erstmals PFIA-Proben der Firma 3M bei unterschiedlichen Feuchtigkeits- und Temperaturbedingungen untersucht. Sie kombinierten dafür Infrarot-Spektroskopie-Methoden an BESSY II und werteten die Daten mit aufwändigen statistischen Analysen aus. “Wir wollten das Verhalten von Wassermolekülen und Wasser im Inneren der Nanokanäle der Membran besser verstehen, vor allem beim Übergang zu trockeneren Bedingungen”, erklärt Dr. Ljiljana Puskar, die Erstautorin der Arbeit, die nun in der Fachzeitschrift Physical Chemistry/Chemical Physics erschienen ist.

Die experimentellen Daten belegen sehr große Unterschiede im Wassermanagement zwischen NAFION und PFIA, insbesondere bei geringer Feuchtigkeit: “Wir können deutlich sehen, dass PFIA sowohl bei der Rückhaltung von Wasser als auch bei der Aufnahme von Wasser besser funktioniert“, sagt Puskar. Die Wissenschaftlerinnen und Wissenschaftler konnten sogar entschlüsseln, wie die PFIA-Membran Wasser speichert: Denn durch die zusätzlichen Andockstellen für Protonen an den Seitenketten lagern sich dort ebenfalls Wassermoleküle an und bauen über Wasserstoffbrückenbindungen ein Netz auf, das weitere Wassermoleküle einbindet.

Diese Ergebnisse helfen dabei, solche Membranen zu optimieren, so dass Brennstoffzellen auch bei höheren Temperaturen und geringerer Feuchtigkeit noch effizient arbeiten und breiter eingesetzt werden können. „In dieser Arbeit haben wir zusammen mit 3M einen großen Erkenntnisfortschritt erreicht, was das Wassermanagement in alternativen Protonen-Austauschmembranen angeht. Wir werden an den Infrarot-Beamlines von BESSY II die experimentellen Möglichkeiten noch um operando Infrarot-Spektroskopie und Mikroskopie erweitern, um ein breites Spektrum von Energie-Materialien unter Betriebsbedingungen zu untersuchen“, sagt Prof. Dr. Emad Aziz, der das HZB-Institut für Methoden der Materialentwicklung leitet.

Publikation: INFRARED DYNAMCIS STUDY OF THERMALLY TREATED PERFLUOROIMIDE ACID PROTON EXCHANGE MEMBRANES; L. Puskar, E. Ritter, U. Schade, M. Yandrasits, S. J. Hamrock, M. Schaberg, and E. F. Aziz. Phys. Chem. Chem. Phys., 2017, DOI: 10.1039/C6CP06627E

Dr. Ina Helms | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Weitere Informationen:
http://www.helmholtz-berlin.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften