Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bessere Anwendungsmöglichkeiten für Laserlicht

28.03.2017

Internationales Forschungsteam entwickelt Hybridmaterial mit faszinierender Struktur

Licht wird unterschiedlich absorbiert, je nachdem, auf welches Material es trifft. Einem internationalen Forschungsteam, darunter Wissenschaftlerinnen und Wissenschaftler der Christian-Albrechts-Universität zu Kiel (CAU), ist es gelungen, ein komplexstrukturiertes Hybridmaterial herzustellen, das ein einzigartiges Spektrum an Wellenlängen aufnehmen kann. Gleichzeitig streut es Licht und wird dadurch besonders interessant für Industrieanwendungen. In der Optoelektronik könnte es einen wichtigen Schritt für Laserlicht als Nachfolger von LEDs bedeuten.


In der Sputteringanlage der Technischen Universität Moldau werden Mikrotetrapoden aus Aerographit und Kohlenstoff mit noch kleineren Nanotetrapoden aus Zinkoxid besetzt.

Foto: Yogendra Mishra


Ein internationales Forschungsteam hat ein Nanohybridmaterial entwickelt mit einer faszinierenden Struktur von Tetrapoden.

Foto: Yogendra Mishra

Die in Nature Scientific Reports vorgestellten Ergebnisse sind das Resultat einer breit angelegten internationalen Forschungskooperation mit Mitgliedern aus Deutschland, Moldawien, Dänemark und Australien. „Als Materialwissenschaftler versuchen wir ständig, Nanomaterialien zu entwickeln, die ein möglichst breites Spektrum von Lichtwellen absorbieren können“, erklärt Dr. Yogendra Mishra.

Er leitet eine unabhängige Untergruppe der Arbeitsgruppe Funktionale Nanomaterialien von Professor Rainer Adelung am Institut für Materialwissenschaft an der Universität Kiel. Ihre besondere Expertise ist es, vierarmige Zinkoxid-Strukturen, sogenannte Tetrapoden, zu entwickeln.

„Jetzt haben wir Tetrapoden auf eine besondere Art und Weise hergestellt, wodurch ein Hybridmaterial aus Kohlenstoff und anorganischem Material entstanden ist. Es kann nicht nur ein einzigartiges Spektrum an Wellenlängen von Ultraviolett bis Infrarot absorbieren, sondern auch Licht streuen“, erläutert Mishra. „Durch seine komplexe 3D-Tetrapoden-Architektur wirft unser Material das Licht in sämtliche Richtungen zurück.“

Die lichtstreuende Eigenschaft des Hybridmaterials ist eine zentrale Voraussetzung, um Laserlicht für optoelektronische Technologien wie in der Automobilindustrie einzusetzen. „In der modernen Lichttechnologie sollen Produkte so hell wie möglich sein, ohne dabei unnötige Wärme zu erzeugen. So ist es bei herkömmlichen Glühbirnen der Fall, die ja schon fast ins Museum gehören. Die heutigen LEDs sind zwar besser, aber am effizientesten wäre leistungsstarkes, laserbasiertes Licht“, so Materialwissenschaftler Mishra. Dass Laserlicht bisher noch nicht umfangreich in der Industrie eingesetzt wird, liegt genau an seiner Leistungsstärke: Trifft es direkt auf das menschliche Auge, kann dies zu gesundheitlichen Schäden führen.

Das internationale Forschungsteam unter Kieler Beteiligung versuchte daher Bauelemente zu entwickeln, die gleichzeitig die Helligkeit von Laserlicht vermindern und dabei seiner hohen Leistungsstärke standhalten. Diesen Effekt hat die komplexe Tetrapoden-Architektur des neuen Hybridmaterials – das Ergebnis einer engen Zusammenarbeit. Die Kieler Zinkoxidtetrapoden wurden dafür an der Technischen Universität Hamburg-Harburg in Aerographit-Kohlenstoff-Tetrapoden umgewandelt.

Auf ihre Oberfläche setzte ein Team der Technischen Universität Moldau mit einer speziellen Sputtering-Anlage winzige Zinkoxid-Nanokristalle – ebenfalls in Tetrapodenform. So entstand das Hybridmaterial mit seiner faszinierenden räumlichen Architektur: Mikrotetrapoden aus Kohlenstoff besetzt mit noch kleineren Nanotetrapoden aus Zinkoxid. Wissenschaftlerinnen und Wissenschaftler der Universitäten Kopenhagen und Sydney untersuchten anschließend die Eigenschaften des neu entwickelten Nanomaterials.

„Materialien mit Zinkoxid-Aerographit-Architektur haben eine hohe technologische Bedeutung. Unser Ziel war es, sowohl ein kosteneffizientes Herstellungsverfahren zu entwickeln als auch die einzigartigen Eigenschaften des Materials umfassend zu verstehen“, sagt Professor Ion Tiginyanu, Leiter des National Centre for Materials and Testing an der Technischen Universität Moldau. Seine lichtstreuende Eigenschaft kombiniert mit dem einfachen und kostengünstigen Herstellungsverfahren macht das neue Hybridmaterial zu einem aussichtsreichen Kandidaten für einen breiten Einsatz in optoelektronischen Technologien, ist das Forschungsteam überzeugt.

Originalpublikation
Ion Tiginyanu, Lidia Ghimpu, Jorit Gröttrup, Vitalie Postolache, Matthias Mecklenburg, Marion A. Stevens-Kalce, Veaceslav Ursaki, Nader Payami, Robert Feidenhansl, Karl Schulte, Rainer Adelung, Yogendra Kumar Mishra. Strong light scattering and broadband (UV to IR) photoabsorption in stretchable 3D hybrid architectures based on Aerographite decorated by ZnO nanocrystallites. Sci. Rep. 6, 32913, doi: 10.1038/srep32913 (2016).

Fotos stehen zum Download bereit:

http://www.uni-kiel.de/download/pm/2017/2017-084-1.jpg
Ein internationales Forschungsteam hat ein Nanohybridmaterial entwickelt mit einer faszinierenden Struktur von Tetrapoden. Foto: Yogendra Mishra

http://www.uni-kiel.de/download/pm/2017/2017-084-2.jpg
In der Sputteringanlage der Technischen Universität Moldau werden Mikrotetrapoden aus Aerographit und Kohlenstoff mit noch kleineren Nanotetrapoden aus Zinkoxid besetzt.
Foto: Yogendra Mishra

http://www.uni-kiel.de/download/pm/2017/2017-084-3.jpg
Aufnahmen aus dem Rasterelektronenmikroskop zeigen die Gestalt der Tetrapoden vor (b) und nach (c) der Behandlung mit dem Sputteringverfahren.
Bild: Yogendra Mishra

http://www.uni-kiel.de/download/pm/2017/2017-084-4.jpg
Das Streuungsverhalten des neu geschaffenen Nano-Hybridmaterials, dargestellt mittels grünen Laserpointers, mindert die Intensität des Laserlichts ab und macht es so einfacher für die Industrie nutzbar.
Foto: Yogendra Mishra

http://www.uni-kiel.de/download/pm/2017/2017-084-5.jpg
Dr. Yogendra Mishra von der Universität Kiel zeigt die Lichtstreuung des neuen Nano-Hybridmaterials aus Kohlenstoff und Zinkoxid.
Foto: Julia Siekmann, CAU

http://www.uni-kiel.de/download/pm/2017/2017-084-6.jpg
Das Licht des Laserpointers wird über das gesamte Material gestreut, anstatt sich nur auf einen Punkt zu konzentrieren.
Foto: Julia Siekmann, CAU

Kontakt:
Dr. habil. Yogendra Kumar Mishra
Arbeitsgruppe Funktionale Nanomaterialien
Technische Fakultät
Telefon: +49 431 880-6183
E-Mail: ykm@tf.uni-kiel.de

Professor Ion Tiginyanu
Director of the National Centre for Materials Study and Testing
Technical University and Academy of Sciences of Moldova
Telefon: +373 22 27 40 47
E-Mail: tiginyanu@asm.md

Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt „Nanowissenschaften und Oberflächenforschung“ (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische, Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Materialwissenschaft, Chemie, Physik, Biologie, Elektrotechnik, Informatik, Lebensmitteltechnologie und verschiedenen medizinischen Fächern zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf www.kinsis.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Redaktion: Julia Siekmann
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Twitter: www.twitter.com/kieluni Facebook: www.facebook.com/kieluni, Instagram: instagram.com/kieluni

Weitere Informationen:

http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2017-084-laser

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.

nachricht Neues Material macht Kältemaschinen energieeffizienter
10.04.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Im Focus: Basler Forschern gelingt die Züchtung von Knorpel aus Stammzellen

Aus Stammzellen aus dem Knochenmark von Erwachsenen lassen sich stabile Gelenkknorpel herstellen. Diese Zellen können so gesteuert werden, dass sie molekulare Prozesse der embryonalen Entwicklung des Knorpelgewebes durchlaufen, wie Forschende des Departements Biomedizin von Universität und Universitätsspital Basel im Fachmagazin PNAS berichten.

Bestimmte mesenchymale Stamm-/Stromazellen aus dem Knochenmark von Erwachsenen gelten als äusserst viel versprechend für die Regeneration von Skelettgewebe....

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

Stralsunder IT-Sicherheitskonferenz im Mai zum 7. Mal an der Hochschule Stralsund

12.04.2018 | Veranstaltungen

Materialien erlebbar machen - MatX 2018 - Internationale Konferenz für Materialinnovationen

12.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Laser erzeugt Magnet – und radiert ihn wieder aus

18.04.2018 | Physik Astronomie

Neue Technik macht Mikro-3D-Drucker präziser

18.04.2018 | Physik Astronomie

Intelligente Bauteile für das Stromnetz der Zukunft

18.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics