Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fußball-WM: Ein Dormagener spielt überall mit

13.05.2002


Der präziseste Fußball aller Zeiten – Bayer-Werkstoffe machen’s möglich

Der Ball ist rund. Das gilt nach wie vor. Er wird auch nach wie vor von Hand zusammengenäht. Der Ball ist jedoch nicht mehr aus Leder, sondern aus High-Tech-Werkstoffen, die ihm eine bislang ungekannte Präzision verleihen. Die Rede ist vom Ball, um den sich in den nächsten Wochen alles drehen wird: Dem WM-Ball, von adidas gemeinsam mit Bayer-Experten entwickelt. Bayer-Produkte, hergestellt im rheinischen Dormagen, machen den offiziellen Spielball erst zum "präzisesten Fußball aller Zeiten", wie ihn ein FIFA-Experte nannte. Der Ball besteht zu rund 50 Prozent aus Bayer-Werkstoffen.

Die wichtigste Innovation, die in dem Ball steckt, ist der sogenannte "syntaktische Schaum" auf Basis des Bayer-Polyurethans Impranil®, der im Vergleich zum "Tricolore-Ball" der WM 1998 in Frankreich weiter entwickelt wurde: Der Schaum besteht aus gasgefüllten Mikrozellen, die extrem elastisch und äußerst widerstandsfähig sind. Sie sorgen dafür, dass der Ball nach dem Schuss sehr schnell wieder seine ursprüngliche Form annimmt. Er ist somit besser kontrollierbar und der Spieler kann die Flugbahn besser berechnen. Hunderte von Tests im adidas-Fußballlabor belegen es: Der Ball, mit Wucht "getreten" von einem Roboterbein, landet auch nach hunderten von Schüssen immer wieder an derselben Stelle.

"Fevernova™" lautet der Name des offiziellen WM-Balls, und auch Walter Schulz, Leiter des Dormagener Bayerwerks, ist schon längst vom WM-Fieber erfasst: "Ein Dormagener spielt in Japan und Korea immer mit", schmunzelt der Diplom-Ingenieur. "Wir von Bayer Dormagen sind stolz darauf, dass wir mit unseren Produkten zum wichtigsten Fußballereignis des Jahres beitragen."

Der oben beschriebene syntaktische Schaum ist eingebettet in einen aus mehreren Polyurethan-Schichten bestehenden Produktverbund, der auf ein textiles Gewebe aufgebracht wird. Die erste Schicht ist mit dem Fevernova™-Grundmuster bedruckt, das dem Ball einen edlen Hinterglaseffekt verleiht und zudem das aufgedruckte Muster dauerhaft vor Abrieb schützt. Danach werden weitere Schichten des Polyurethans auf Basis von Impranil® aufgetragen, darunter auch der Schaum. Die oberste Schicht besteht aus einer besonders strapazierfähigen Produktqualität. Nach dem Aushärten weisen die übereinander liegenden Schichten all die Eigenschaften auf, die bei der Produktentwicklung an den Ball der Bälle gestellt wurden: Abriebfest, elastisch, kälteflexibel sollte er sein – und natürlich wasserfest. Um letzteres zu überprüfen, gibt es im adidas-Prüflabor Tests, bei denen der Fevernova™ unzählige Male ins Wasser getaucht wird.

Die technischen Details des WM-Balls und die Testergebnisse, die allesamt über den strengen Vorgaben des Weltfußballverbandes liegen, ließen nicht nur FIFA-Experten ins Schwärmen kommen: Auch Weltklasse-Spieler wie Zinedine Zidane und David Beckham waren nach umfassenden Tests begeistert. In wenigen Tagen ist Anpfiff des ersten WM-Spiels, und einiges deutet darauf hin, dass das "Fevernova-Fieber" sich sehr schnell weiter ausbreiten wird...

BayNews Team | BayNews

Weitere Berichte zu: Dormagen Fußball-WM Schaum Schicht

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Biegsame Touchscreens: Neues Herstellungsverfahren für transparente Elektronik verbessert
28.03.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie