Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gesucht: das richtige Wandmaterial für ITER

02.10.2007
Seit kurzem ist die Fusionsanlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching die weltweit einzige Anlage, die mit einer vollständig mit dem Metall Wolfram bedeckten Wand experimentieren kann. Die Ergebnisse sind viel versprechend: Wolfram als Wandmaterial könnte auch für das internationale Fusionsexperiment ITER eine attraktive Lösung sein.

Forschungsziel des IPP ist die Entwicklung eines Kraftwerks, das - ähnlich wie die Sonne - aus der Verschmelzung von Atomkernen Energie gewinnt. Die Machbarkeit soll mit 500 Megawatt Fusionsleistung der internationale Experimentalreaktor ITER (lat. "der Weg") zeigen, dessen Bau im kommenden Jahr in Cadarache/Südfrankreich beginnen wird. Hier muss es gelingen, den Brennstoff - ein dünnes ionisiertes Wasserstoffgas, ein "Plasma" - berührungsfrei in einem Magnetfeldkäfig einzuschließen und auf Zündtemperaturen über 100 Millionen Grad aufzuheizen. Eine der großen Herausforderungen dabei ist es, eine verträgliche Wechselwirkung zwischen dem heißen Plasma und der Wand des umgebenden Gefäßes zu erreichen.

Das Problem

Energiereiche Plasmateilchen können nämlich Atome aus der Wand herausschlagen, die dann in das Plasma eindringen und es verunreinigen. Anders als der leichte Wasserstoff sind die schweren Atome aus der Wand auch bei den hohen Fusionstemperaturen nicht vollständig ionisiert. Je mehr Elektronen noch an die Atomkerne gebunden sind, desto mehr Energie entziehen sie dem Plasma und strahlen sie als Ultraviolett- oder Röntgenlicht wieder ab. Auf diese Weise kühlen sie das Plasma ab, verdünnen es und verringern so die Fusionsausbeute. Sind leichte Verunreinigungen in Konzentrationen von einigen Prozent noch tragbar, liegt das Limit für schwere Verunreinigungen wie Eisen oder Chrom viel niedriger. Heutige Anlagen nutzen deshalb für die Wand durchweg leichte Materialien wie Beryllium oder Kohlenstoff. Auch für die Wand des Testreaktors ITER sind beide vorgesehen.

... mehr zu:
»ASDEX »IPP »ITER »Kohlenstoff »Plasma »Upgrade »Wandmaterial

Für ITER sind Kohlenstoff und Beryllium aber nicht mehr problemlos: Ihre Zerstäubung bei Beschuss mit Wasserstoff ist relativ hoch - bei den hohen Wasserstoff-Flüssen aus dem großen ITER-Plasma käme es daher zu starkem Materialabtrag. Darüber hinaus sammeln sich in Kohlenstoff leicht Wasserstoff-Teilchen an, in ITER also auch - aus Sicherheitsgründen höchst unerwünscht - die radioaktive Variante Tritium. Eine komplett mit dem Metall Wolfram beschichtete Wand würde diese Probleme der leichten Elemente vermeiden: Wolfram zeigt vorteilhafte thermische Eigenschaften, geringe Zerstäubung durch Wasserstoff, keine langfristige Einlagerung von Tritium. Bleibt die kritische Frage, wie viele der schweren Wolfram-Teilchen in das Plasmazentrum vordringen können. Mehr als einige Hunderttausendstel - so neuere Abschätzungen - dürfen es für ITER nicht sein.

Wolfram-Experimente im IPP

Pionier beim Testen von Wolfram als Wandmaterial ist das Garchinger Experiment ASDEX Upgrade: Trotz schlechter Erfahrungen in anderen Laboratorien hat man 1996 damit begonnen, spezielle Partien der ansonsten komplett mit Kohlenstoff-Kacheln bedeckten Wand mit Wolfram zu beschichten. Man setzte dabei auf den andersartig eingestellten, ITER-ähnlichen, d.h. kalten Plasmarand von ASDEX Upgrade. Das Ergebnis ermutigte zu einer weiteren Reduzierung des Kohlenstoffs. Man wollte prüfen, wie sich dies auf das Plasma und seine Wechselwirkung mit den Wolfram-Komponenten auswirkt. Um andere Forschungsziele nicht zu gefährden, wurde die Wolfram-Oberfläche nur schrittweise vergrößert. Die sich jeweils im Plasma einstellende Wolfram-Konzentration zuverlässig zu ermitteln, ist nicht einfach, umso weniger, wenn die Abstrahlungsverluste nicht nur einer einzigen Verunreinigung zuzuordnen sind. Nach Entwicklung der nötigen Messmethoden zeigte sich jedoch, dass auch eine ausgedehnte Wolfram-Oberfläche das Plasma von ASDEX Upgrade nicht über Gebühr beeinflusst.

Bleibt zu beweisen, dass auch eine volle Metallauskleidung des Gefäßes mit den für ITER gewünschten günstigen Plasmazuständen - wie dem im IPP entwickelten "High Confinement-Regime" - verträglich ist. Nachdem die letzten Kohlenstoff-Kacheln ausgetauscht und alle Oberflächen sorgfältig gereinigt waren, begannen kürzlich die Experimente mit einer reinen Wolfram-Wand. Im Interesse eindeutiger Versuchsbedingungen hat man dabei auch auf die sonst allgemein übliche Vorbehandlung des Gefäßes mit Bor verzichtet. Um die Verluste durch Verunreinigungsstrahlung zu reduzieren, werden dazu die Wandoberflächen durch eine Glimmentladung in einem Borwasserstoffgas mit einer dünnen Bor-Schicht bedeckt. In ITER oder einem späteren Kraftwerk wird dies jedoch nicht mehr möglich sein.

Deshalb hat auch ASDEX Upgrade ohne Borierung begonnen - und war erfolgreich: Die Wolframkonzentration liegt unter der kritischen Schwelle, die gewünschten günstigen Plasmazustände lassen sich mit nur geringem Qualitätsverlust einstellen. Ziel der weiteren Untersuchungen wird es sein, die Wolfram-Verträglichkeit in ITER-relevanten Plasmazuständen genau zu prüfen. Entscheidend wird sein, ob auch ohne Borierung andauernde "gute" High-Confinement-Plasmen erreicht werden. Ungefähr zwei Jahre kann sich das IPP für diese Arbeiten Zeit nehmen - dann fällt die Entscheidung über die Innenwand von ITER.

Isabella Milch | idw
Weitere Informationen:
http://www.ipp.mpg.de

Weitere Berichte zu: ASDEX IPP ITER Kohlenstoff Plasma Upgrade Wandmaterial

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forscherin entwickelt elektronische Textilstruktur für Medizinprodukte
17.02.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Untergrund beeinflusst Halbleiter-Monolagen
16.02.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungen

Physikerinnen und Physiker diskutieren in Bremen über aktuelle Grenzen der Physik

21.02.2017 | Veranstaltungen

Kniffe mit Wirkung in der Biotechnik

21.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit den Betriebsräten Sozialpläne

21.02.2017 | Unternehmensmeldung

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungsnachrichten

Zur Sprache gebracht: Und das intelligente Haus „hört zu“

21.02.2017 | Messenachrichten