Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikro zu Nano: eine Frage der Haftung

27.04.2007
Neuerdings sind feine Mikrostrukturen auf Oberflächen von großem wissenschaftlichem und technischem Interesse. Sie versprechen die Entwicklung neuartiger Haftsysteme, deren Vorbild letztlich in der Natur zu finden ist.

Geckos, Spinnen und Fliegen können kopfüber an noch so glatten Wänden und Decken entlang laufen, ohne herunter zu fallen. Die Beschaffenheit und die Anordnung der unzähligen mikroskopisch feinen Hafthärchen sorgen für diese extrem hohen Adhäsionskräfte – selbst an glatten Oberflächen wie Glas.

Professor Eduard Arzt, künftiger wissenschaftlicher Leiter des Leibniz-Instituts für Neue Materialien in Saarbrücken, hat die Gesetzmäßigkeiten von Haft- und Klebekonstruktionen aus der Natur analysiert, um sie in die Materialforschung übertragen zu können. Dafür musste der Untersuchungsgegenstand mit nanoskopischen Methoden experimentell fassbar gemacht werden: Eine Herausforderung angesichts der nur wenige Mikro- bis Nanometer großen Hafthärchen auf den Laufflächen der Tiere. Es wurden auch mathematische Modelle entwickelt, welche die Hafteigenschaften theoretisch beschreiben und Ansatzpunkte für technische Oberflächen mit vergleichbar guten oder sogar noch besseren Hafteigenschaften liefern.

Voraussetzung für die gelungene Übertragung in die Technik ist die gezielte Strukturierung von Polymeroberflächen in feine Noppen. Hier gilt: Je feiner, desto besser. Bis jetzt ist es Professor Arzt und seinen Wissenschaftskollegen im Labor gelungen, das Prinzip der Geckohaftung im Mikrobereich umzusetzen. Künftig sollen die Strukturen noch weiter verfeinert werden, um auch neue in der Natur nicht realisierbare Effekte zu erzeugen: von Mikro zu Nano.

Die Industrie hat bereits großes Interesse an dem Verfahren bekundet, bergen doch die nanomechanischen Haftmechanismen der Natur ein großes Anwendungspotenzial, um daraus technisch einsetzbare klebstofffreie Befestigungssysteme zu entwickeln, die im Gegensatz zu konventionellen Haftsystemen keinen Haftpartner mehr benötigen.

Die neuen Klebetechniken könnten noch mehr: Sie lassen sich bei Bedarf wieder leicht lösen und verschmutzen weniger. Dies sind optimale Bedingungen für vielfältige Einsatzmöglichkeiten. Sie reichen von wieder verwendbaren selbst haftenden Klebebändern bis hin zu komplexen Kletterrobotern für den industriellen Einsatz. Hierfür wollen die Forscher die Umsetzung vom Labormaßstab zu großflächigen Anwendungen in Angriff nehmen.

Kontakt:
Prof. Dr. Eduard Arzt
Tel. 07 11/6 89-34 11
E-Mail: arzt@mf.mpg.de
Ab Oktober 2007:
INM Leibniz-Institut für Neue Materialien gGmbH
Im Stadtwald, Gebäude D2 2
66123 Saarbrücken
Tel. 06 81/93 00-0
Fax: 06 81/93 00-2 23
E-Mail: contact@inm-gmbh.de

Helga Hansen | Innovationseinblicke Saarland
Weitere Informationen:
http://www.inm-gmbh.de
http://www.innovation.saarland.de

Weitere Berichte zu: Hafteigenschaften Hafthärchen Mikro Nano

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie