Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DNA wird durch Platinbeschichtung zum Nanodraht

03.04.2007
Forscher modellieren das Wachstum von Edelmetallclustern am Computer

Leitet das strickleiterförmige DNA-Molekül eigentlich elektrischen Strom? Bereits 1962 hatten zwei Wissenschaftler der Universität Bristol einen geringen Stromfluss gemessen; später stellte sich allerdings heraus, dass der Strom durch die Eisschicht geflossen war, die die DNA umgab. Bis heute ist nicht klar, ob Elektronen nur über kurze Distanzen von wenigen Basenpaaren "tunneln" oder ob sie sich vielleicht auch sprungweise über größere Distanzen fortbewegen können.

Ihre langkettige, robuste Form und die Fähigkeit zur Selbstorganisation beim Aufbau komplexer Netzwerke machen die DNA in jedem Fall zu einem idealen Trägermaterial (einem so genannten "Templat") für elektrische Drähte mit Durchmessern im einstelligen Nanometerbereich. Um nun eine optimale Leitfähigkeit dieser Drähte zu gewährleisten, gibt es mehrere Möglichkeiten. Man kann die Struktur der DNA selbst verändern, in dem man bestimmte Basen durch andere, metallionenhaltige Basen ersetzt. Oder man versucht, Metallpartikel in engen Abständen an die DNA zu binden und sie so stromleitend zu machen. Den zweiten Ansatz verfolgen die Wissenschaftler am Institut für Werkstoffwissenschaft der TU Dresden: sie lagern Platinsalze an die DNA an, die dann zu regelmäßigen Platinclusterketten wachsen.

Solche Vorgänge sind in ihren Teilprozessen experimentell praktisch nicht mehr auflösbar, können jedoch mittels theoretischer Simulationen mit immer größerer Treffsicherheit am Computer modelliert werden. In Zusammenarbeit mit der Universität Trieste und dem Imperial College London ist es den Dresdnern auf diese Weise gelungen, nanoelektronische Schaltkreise aus einzelnen metallisierten DNA-Ketten zu bauen. Solche Schaltkreise sind für verschiedene Anwendungen interessant; gemeinsam mit sechs Industrieunternehmen entwickelt das Institut für Werkstoffwissenschaft in einem neu gegründeten Wachstumskern Biosensoren und Katalysatoren.

Am neuen Hochleistungsrechner des Zentrums für Informationsdienste und Hochleistungsrechnen der Technischen Universität Dresden wird das Projekt von Prof. Wolfgang Pompe und seinen Kollegen zur Ausbildung von nanoelektronischen Strukturen durch die Beschichtung biologischer Trägermaterialien eines der rechenintensivsten überhaupt sein. Ein Beispiel: Alle Vorgänge, die stattfinden, wenn die Metallatome sich im wässrigen Medium an die passenden Basenpaaren der DNA anlagern, müssen über einen Zeitraum von etwa 20 Pikosekunden (1 Pikosekunde entspricht 0,000 000 000 001 Sekunden) simuliert werden können. Für solche Berechnungen soll auch das zukünftige Netzwerk mehrerer Hochleistungsrechner in Deutschland (GRID) genutzt werden, dessen Teil der neue Dresdner Supercomputer sein wird.

Weitere Informationen: Prof. em. Dr. rer. nat. habil. Wolfgang Pompe, Technische Universität Dresden, Institut für Werkstoffwissenschaft, Professur für Materialwissenschaft und Nanotechnik, Tel. 0351 463-31420, pompe@tmfs.mpgfk.tu-dresden.de

Kim-Astrid Magister | idw
Weitere Informationen:
http://www.tu-dresden.de/

Weitere Berichte zu: Basen DNA Trägermaterial Werkstoffwissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung
14.12.2017 | Universität Bayreuth

nachricht Warum Teige an Oberflächen kleben
14.12.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten