Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit molekularen "Dominosteinen" zum Nano-Draht

19.02.2007
Moleküle ordnen sich "von selbst" zu langen, parallelen Ketten auf einer präparierten Oberfläche
Mit fortschreitender Miniaturisierung in der Mikroelektronik wird es immer kniffliger, die winzigen Bauteile herzustellen. Viel praktischer wäre es da, wenn lediglich die Bestandteile miteinander gemischt werden müssten - und schon setzt sich das gewünschte Bauteil selbst zusammen. Molekulare Selbstorganisation heisst das Zauberwort, das Forscherherzen höher schlagen lässt.

Auf diesem Gebiet haben Empa-Forscher vor kurzem beachtliche Fortschritte erzielt; es ist ihnen gelungen, zwei organische Moleküle so zu gestalten, dass sie sich auf einer speziell präparierten Goldoberfläche zu langen, parallelen Ketten anordnen - sozusagen zu Nano-Drähten. Gezielte Selbstanordnung auf Oberflächen und die zugrunde liegenden Prozesse sind aber nicht nur für die molekulare Elektronik wesentlich; auch für die heterogene Katalyse - wie sie etwa im Abgaskatalysator abläuft - und die Sensorik sind sie von Bedeutung.
Schon seit einiger Zeit können Forscher bestimmte Moleküle so "designen", dass sie sich in abwechselnder Reihenfolge aneinander anlagern und unter bestimmten Umständen - beispielsweise auf Oberflächen - Ketten bilden.

Das muss man sich ähnlich wie bei einem Dominospiel vorstellen - aber ohne Spieler; die Reihen bilden sich von selbst. Allerdings keine sehr langen; denn Oberflächen - selbst extrem glatte - weisen auf atomarer Ebene stets Unebenheiten wie Stufen auf, die für die Molekülketten unüberwindbare Hindernisse darstellen. Und da die nur wenige Atomschichten hohen Stufen normalerweise zufällig auf der Oberfläche verteilt sind, ordnen sich auch die Molekülketten äusserst unregelmässig auf der Oberfläche an. Die Unebenheiten sind freilich nur unter dem Rastertunnelmikroskop zu "sehen" bzw. zu fühlen. Dabei tastet eine ultrafeine Spitze, an der eine elektrische Spannung angelegt wurde, die Oberfläche ab. Ist die Spitze nahe genug an der Oberfläche, fliesst ein so genannter Tunnelstrom. Wird dieser nun durch variables Nachregulieren der Lage der Nadel konstant gehalten, lässt sich damit die Topographie der Oberfläche sichtbar machen.

Wie wäre es nun aber, so überlegten sich Roman Fasel und seine Kollegen, wenn die Stufen alle parallel zueinander ausgerichtet würden, wie in einer ellenlangen Treppe? Theoretisch müssten sich dann auch die Molekülketten, die sich bevorzugt entlang den Stufenkanten bilden, zu einem langen, parallelen Gittermuster anordnen. Also präparierten die Doktorandin Marta Cañas-Ventura von der EPF Lausanne und ihre Empa-Kollegen die Oberflächen eines Gold-Einkristalls entsprechend. Nach etlichen Zyklen unter Argon-Ionenbeschuss - ein Reinigungsschritt, mit dem winzige Unreinheiten von der Oberfläche entfernt werden - und Erhitzen waren die Forscher am Ziel: Die Goldoberfläche wies unzählige parallele Stufen auf, alle gleich hoch - genau eine Goldatomschicht (0.24 Nanometer) -, die zudem in einem regelmässigen Abstand von 5.8 Nanometer parallel zueinander verliefen.

Mit Designer-Molekülen zu sich selbst organisierenden Nano-Ketten

Nun brauchten sie nur noch die Bausteine der Nano-Ketten im Hochvakuum auf die Goldoberfläche aufzudampfen. Eines der organischen Moleküle hatten Kollegen vom Max-Planck-Institut für Polymerforschung in Mainz speziell für das Empa-Team synthetisiert, und zwar so, dass es eine Art Gegenstück zum zweiten Baustein darstellt: An ihren beiden Enden enthielten die zwei Moleküle jeweils Strukturen, die genau an ihr Gegenüber auf dem Partnermolekül passten und über so genannte Wasserstoffbrücken an dieses andocken konnten. Danach untersuchten Fasel und sein Team die Oberflächen wiederum unter dem Rastertunnelmikroskop.

Was die Forscher sahen, bestätigte ihre Überlegungen voll und ganz. Bei geringen Konzentrationen der beiden Kettenbausteine bildete sich an jeder Stufe eine einzelne Kette; bei höheren Konzentrationen eine Doppelkette. Die Doppelketten wiesen mit defektfreien Bereichen von rund 30 Nanometer sogar eine deutlich bessere Ordnung auf als die Einzelketten, "vermutlich, weil sich beide Ketten gegenseitig stabilisieren", so Fasel. Insgesamt bildete sich eine Art Gitter auf der Goldoberfläche, bei dem unzählige Nano-Ketten in regelmässigem Abstand parallel verliefen. "Unsere Studie ist ein so genannter . Damit haben wir gezeigt, dass es grundsätzlich möglich ist, supramolekulare Ketten in paralleler Anordnung auf Oberflächen wachsen zu lassen - und zwar über verhältnismässig grosse Distanzen", sagt der Empa-Forscher, dessen Ergebnisse demnächst in der Fachzeitschrift "Angewandte Chemie" veröffentlicht werden.

Ein Manko haben die sich selbst organisierenden supramolekularen Ketten allerdings noch: Als Leiter für die molekulare Elektronik sind sie nicht geeignet, da sie einerseits mit einem metallischen Substrat - Gold - in Kontakt sind, und andererseits eine zu geringe Leitfähigkeit aufweisen. Die Empa-Forscher arbeiten deshalb intensiv an Methoden, um auch Molekülklassen, die sich zur Stromleitung besser eignen, auf isolierenden Oberflächen zu supramolekularen Drähten anzuordnen. Von besonderem Interesse sind ausserdem "schaltbare" Moleküle, welche dereinst die Rolle von Transistoren in sich selbst organisierenden molekularen Schaltkreisen übernehmen könnten. Längerfristiges Ziel der Forscher ist es laut Fasel, der auch das von der EU im 6. Rahmenprogramm geförderte RADSAS-Projekt ("Rational Design and Characterisation of Supramolecular Architectures on Surfaces") koordiniert, die molekulare Selbstorganisation so zu verstehen und zu steuern, dass sich Anwendungen auf der Nanometerskala nicht nur im Labor, sondern auch für die industrielle Herstellung umsetzen lassen.

Fachliche Informationen

Dr. Roman Fasel, nanotech@surfaces, Tel. +41 44 823 43 48, roman.fasel@empa.ch

Sabine Voser | idw
Weitere Informationen:
http://www.empa.ch

Weitere Berichte zu: Goldoberfläche Molekül Molekülkette Nanometer

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Advanced Materials: Glas wie Kunststoff bearbeiten
18.05.2018 | Karlsruher Institut für Technologie

nachricht Stärkstes Biomaterial der Welt schlägt Stahl und Spinnenseide
17.05.2018 | Deutsches Elektronen-Synchrotron DESY

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Kosmische Ravioli und Spätzle

Die inneren Monde des Saturns sehen aus wie riesige Ravioli und Spätzle. Das enthüllten Bilder der Raumsonde Cassini. Nun konnten Forscher der Universität Bern erstmals zeigen, wie diese Monde entstanden sind. Die eigenartigen Formen sind eine natürliche Folge von Zusammenstössen zwischen kleinen Monden ähnlicher Grösse, wie Computersimulationen demonstrieren.

Als Martin Rubin, Astrophysiker an der Universität Bern, die Bilder der Saturnmonde Pan und Atlas im Internet sah, war er verblüfft. Die Nahaufnahmen der...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Raumschrott im Fokus

Das Astronomische Institut der Universität Bern (AIUB) hat sein Observatorium in Zimmerwald um zwei zusätzliche Kuppelbauten erweitert sowie eine Kuppel erneuert. Damit stehen nun sechs vollautomatisierte Teleskope zur Himmelsüberwachung zur Verfügung – insbesondere zur Detektion und Katalogisierung von Raumschrott. Unter dem Namen «Swiss Optical Ground Station and Geodynamics Observatory» erhält die Forschungsstation damit eine noch grössere internationale Bedeutung.

Am Nachmittag des 10. Februars 2009 stiess über Sibirien in einer Höhe von rund 800 Kilometern der aktive Telefoniesatellit Iridium 33 mit dem ausgedienten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

22.05.2018 | Biowissenschaften Chemie

Mikroskopie der Zukunft

22.05.2018 | Medizintechnik

Designerzellen: Künstliches Enzym kann Genschalter betätigen

22.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics