Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Gesiebte" Röntgenstrahlung an der Uni Kiel

08.11.2001


Neuartige Optik zur Bündelung des hellsten Röntgenlichts der Welt

In der heutigen Ausgabe der Zeitschrift "Nature" beschreiben Kieler Oberflächen-Physiker, wie Röntgenlicht auf einen Punkt von weniger als 10 Nanometer (10 Millionstel Millimeter) Durchmesser fokussiert werden kann. Ein eigens entwickeltes Photonensieb bündelt die Strahlung bei diesem Verfahren. Herkömmliche Linsen, wie beispielsweise in optischen Mikroskopen, können für diese Aufgabe nicht eingesetzt werden, da sie die kurzwellige Röntgenstrahlung nicht durchlassen.

Die neuartigen Photonensiebe, mittlerweile für die Forschergruppe patentiert, bestehen aus vielen zehntausend geeignet angeordneten Löchern in einer ansonsten undurchsichtigen Folie. Mit diesen speziell für die Röntgenstrahlung entwickelten Optiken wird an dem Freien-Elektronen-Laser (FEL), der derzeit am Hamburger Synchrotronstrahlungslabor (HASYLAB) bei DESY entsteht, Materialforschung mit bisher unerreichter Feinheit bis in atomare Dimensionen möglich. Der Freie-Elektronen-Laser in Hamburg wird die hellste Röntgenlichtquelle der Welt sein.

Vom Brennpunkt, der bei der Bündelung der Strahlung entsteht, werden Licht und Elektronen emittiert. Sie geben Aufschluss über Struktur und chemische Zusammensetzung einer Materialprobe. Rastert man den gebündelten Röntgenstrahl über die Probe, so erhält man ein hochaufgelöstes Bild der chemischen Zusammensetzung und der elektronischen Eigenschaften.

Die neue Technik eröffnet vielfältige Perspektiven für die Nanotechnologie und die Entwicklung und Erforschung neuer Materialien, beispielsweise für effizientere Katalysatoren oder neue elektronische Bauelemente, die kleiner, schneller und leistungsfähiger sind.

Die Entwicklung wird mit einem vom Bundesministerium für Bildung und Forschung (BMBF) finanzierten Großprojekt unter Leitung von Dr. Lutz Kipp, Prof. Michael Skibowski, Prof. Richard Berndt (Institut für Experimentelle und Angewandte Physik der Christian-Albrechts-Universität zu Kiel) sowie Prof. Robert L. Johnson (Universität Hamburg) gefördert.


Kontakt: Christian-Albrechts-Universität zu Kiel, Institut für Experimentelle und Angewandte Physik, PD Dr. Lutz Kipp, Tel. 0431/880-3875 und -3004, Fax 880-1685, kipp@physik.uni-kiel.de

Susanne Schuck | idw

Weitere Berichte zu: Experimentell Photonensieb Röntgenstrahl Strahlung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften