Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Berechenbare Wolframdrähte

18.07.2005


Kauft man eine Glühbirne, weiß man nie, wie lange sie brennen wird. Die variierende Lebensdauer wird vor allem von Mikrorissen im Wolframdraht begrenzt. Die Rissbildung vor und nach dem Ziehprozess beschreibt ein Simulationsmodell für Werkstoffe.


© Fraunhofer IWM


In der Simulation mit finiten Elementen wird deutlich, wie sich im Wolframdraht ein Riss bildet und wandert. © Fraunhofer IWM



Glühbirnen leben im Dauerbetrieb idealerweise 42 Tage - wenn es nach deren Hersteller ginge. Doch in der Realität sieht es finsterer aus: Manche Birnen brennen erst nach Jahren durch, andere bereits nach ein paar Tagen. Eine einheitlichere Produktqualität vereiteln unter anderem feine Risse im Wolframdraht, die schließlich seinen Bruch verursachen. Mit diesem Problem kämpfen auch die beiden weltweit größten Glühlampenhersteller Osram und Philips. Bisher arbeitete man in der Branche mit Versuch und Irrtum, um das Ziehverfahren für den Draht zu verbessern. Mit der Simulation des Materialverhaltens soll die Produktion gezielter als bisher nachgebessert werden. Den Rissen und nachfolgenden Schwierigkeiten beim Wendeln sind die Hersteller gemeinsam mit Forschern vom Fraunhofer-Institut für Werkstoffmechanik IWM auf der Spur. "Wenn wir die Beschaffenheit und das Verhalten des Drahtes erst einmal kennen, können wir die Produktion optimieren und standardisieren." Davon geht Bernd Eberhard, Projektleiter bei Osram, aus.



Mit 40 Mikrometern ist der Wolframfaden je nach Lampentyp im Mittel nur etwa halb so dünn wie ein menschliches Haar. Bis der Draht diesen Durchmesser erreicht hat, muss er in mehreren Schritten dünn und lang gezogen werden. Je nach Anzahl kann er dabei wenige oder viele Längsrisse bekommen. Solche Splits bilden sich vor allem während der ersten Ziehstufen, also beim Verjüngen von knapp vier Millimetern auf 0,3. Die feinen Risse verlängern sich, wenn der Draht weiter auf bis zu fünf Mikrometer Durchmesser gezogen wird. Der Grund dafür ist die Spannung, die nach dem Ziehen im Draht bestehen bleibt, wie Fraunhofer-Projektleiter Holger Brehm und seine Mitarbeiter herausgefunden haben. "Das Verhalten des Drahts und der Risse während des Ziehprozesses und danach rechnerisch zu beschreiben, ist uns bereits gelungen. Zum ersten Mal kann der Wolframdraht während des gesamten Verjüngens am Bildschirm beobachtet werden."

Die Rissbildung wird weiter untersucht und andere dafür maßgebliche Faktoren in das Modell eingearbeitet. Ein wesentlicher ist etwa die Reibung zwischen Draht und Ziehstein. Ist sie hoch, erwärmt sich das Metall stärker. Daher integrieren die Forscher zurzeit die Temperaturveränderung während und nach dem Ziehen in die Simulation. "Der gezogene Draht kühlt sich an der Oberfläche schneller ab als in seinem Inneren", fasst Brehm die neusten experimentellen Resultate zusammen. "Auch bei diesem Prozess können leider Splits entstehen."

Ansprechpartner:
Dr. Holger Brehm
Telefon: 07 61 / 51 42-3 35, Fax: -1 10
holger.brehm@iwm.fraunhofer.de

Manel Rodriguez Ripoll
Telefon: 07 61 / 51 42-2 76
manel.rodriguez.ripoll@iwm.fraunhofer.de

Prof. Dr. Hermann Riedel
Telefon: 07 61 / 51 42-1 03
hermann.riedel@iwm.fraunhofer.de

Dr. Johannes Ehrlenspiel | idw
Weitere Informationen:
http://www.iwm.fraunhofer.de/pdf/presse/iwm_report1_05.pdf

Weitere Berichte zu: Draht Mikrometer Simulation Splits Wolframdraht

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Der gestapelte Farbsensor
17.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Gefragtes Werkstoff-Knowhow: Fraunhofer LBF baut Elastomer-Forschung aus
16.11.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte