Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Herstellung und Anwendung neuartiger Nanomaterialien

21.09.2004


Wissenschaftler aus Leipzig und Nowosibirsk können künftig verstärkt zusammenarbeiten. Die Zusammenarbeit wird vom Deutschen Zentrum für Luft und Raumfahrt (DLR) unterstützt. Ziel der Kooperation sind die Herstellung neuartiger Nanomaterialien und die Prüfung ihrer Anwendungspotenziale.


Nanomaterial: hier in einer Verbindung mit der Zusammensetzung Cu4Bi4S9, die durch Gasphasentransport gezüchtet wurde



Das Deutsche Zentrum für Luft- und Raumfahrt (DLR) finanziert für drei Jahre ein Wissenschaftleraustauschprogramm von Prof. Dr. Klaus Bente, Institut für Mineralogie, Kristallographie und Materialwissenschaft der Universität Leipzig, sowie Prof. Dr. S. Tsybulya und Prof. Dr. V. Parmon, Bereskov Instituts für Katalyse der russischen Akademie der Wissenschaften in Nowosibirsk. Die Wissenschaftler aus Nowosibirsk sind Spezialisten u.a. für Mikrostrukturanalyse mittels Synchrotronstrahlung und ergänzen ideal die Kompetenz der Leipziger Wissenschaftler. Die Programm wird am 1.1.2005 beginnen.



Die Forschungsarbeiten umfassen die Synthese, Strukturierung, Charakterisierung und Beurteilungen von Anwendungspotenzialen von Nanomaterialien. Dabei geht es vor allem um halbleitende Verbindungen von Kupfer und Wismut bzw. Blei mit Schwefel. Das Besondere an ihnen ist, dass ihre Kristalle sich durch große Verhältnisse von Länge zu Durchmesser von bis zu mehreren Zehnerpotenzen auszeichnen. Sie sind im Gegensatz zu entsprechenden sehr spröden Massivmaterialien biegsam und sollen zu Spiralen, Ringen etc. verarbeitet werden. Sie können u.a. für thermoelektrische und photovoltaische Anwendungen Verwendung finden.

Besondere Erwartungen werden an die unterschiedlichen Metallordnungen in solchen Verbindungen gesetzt. Entsprechende Ordnungen können durch Elektronenbeschuss in Nanobereichen verändert und darauf basierende physikalische Eigenschaften, z.B. als Miniaturschalter, eingesetzt werden.

Das nebenstehende elektronenmikroskopische Bild zeigt eine solche Verbindung mit der Zusammensetzung Cu4Bi4S9, die durch Gasphasentransport gezüchtet wurde. Die einzelnen Punkte der hochauflösenden TEM-Aufnahme sind in einem Muster von Atomen zusammengefasst, das sich durch nahezu ungestörte Anordnungen auszeichnet. Die Richtung des Pfeils entspricht der Längsausdehnung der Nanofäden, die Durchmesser von minimal 300nm und Längen bis zu 10 mm aufweisen. Die Angaben von 1.2 nm und 0.4 nm geben die Zellparameter der Struktur von Cu4Bi4S9 in zwei Raumrichtungen wieder. Dies wird auch in dem kleinen Bild links oben an hand einer Elektronenbeugungsaufnahme verdeutlicht.

Die Kooperation zwischen den Leipzigern und den Novosibirskern ergänzt die Arbeitschwerpunkte der fächerübergreifenden Arbeitsgemeinschaft "Halbleiterforschung" Leipzig und der Forschergruppe "Architektur von nano- und mikrodimensionalen Strukturelementen". Vorarbeiten der Arbeitsgruppe haben mit Dr. G. Kryukova aus Nowosibirsk bereits zu Publikationen geführt hat. Der Arbeitsbereich von Prof. Bente nutzt auch die Kooperationsmöglichkeiten mit dem Max-Planck-Institut für Mikrostrukturphysik in Halle. Dort betreut Dr. Kornelius Nielsch u.a. gemeinsam mit Prof. Bente Diplomarbeiten mit Themen zu vergleichbaren Materialien.

weitere Informationen: Prof. Dr. Klaus Bente, Telefon: 0341 97-36250, E-Mail: bente@uni-leipzig.de

Dr. Bärbel Adams | idw
Weitere Informationen:
http://www.uni-leipzig.de/~minkrist

Weitere Berichte zu: DLR Luft- und Raumfahrt Nanomaterial

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Metamaterial: Kettenhemd inspiriert Physiker
19.01.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie