Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Ende der "Eisenzeit": Neuer Hochleistungswerkstoff der Zukunft

24.06.2004


Wissenschaftspreis des Stifterverbandes für Prof. Martin Jansen vom Max-Planck-Institut für Festkörperforschung



Für seine Arbeiten auf dem Gebiet der modernen Hochleistungskeramiken wird Prof. Martin Jansen, Direktor am Max-Planck-Institut für Festkörperforschung in Stuttgart, der mit 50 000 Euro dotierte Wissenschaftspreis des Stifterverbandes für die Deutsche Wissenschaft verliehen. Die Auszeichnung für außergewöhnliche Erfolge bei der Umsetzung von Ergebnissen der Grundlagenforschung in Anwendungen wird ihm im Rahmen der Jahresversammlung des Stifterverbandes am 24. Juni 2004 in Leipzig überreicht.



Mit einem innovativen Konzept gelang es Martin Jansen und seinem Team, eine neue Klasse keramischer Hochleistungswerkstoffe zu entwickeln, die bald schon metallische Werkstoffe ersetzen könnten. Stahl - wegen seiner guten Formbarkeit und hoher Zugfestigkeit seit dem 19. Jahrhundert der universelle Werkstoff - toleriert nur vergleichsweise niedrige Temperaturen. Daher müssen in Verbrennungsmotoren zusätzlich Kühlsysteme enthalten sein. Flugzeugturbinen zum Beispiel werden so nicht nur schwer, sondern es entstehen beim Verbrennungsvorgang an den gekühlten Innenwänden auch umweltschädliche Stickoxide. Mit einem neuen, möglichst leichten Werkstoff, der höheren Temperaturen ohne Kühlung standhielte, ließen sich solche Motoren ressourcen- und umweltschonend bauen.

Kandidaten für einen solchen Werkstoff sucht man schon seit langem unter den Keramiken. Deren schlechte mechanische Eigenschaften - vor allem ihre Sprödigkeit - haben die Ingenieure bislang davon abgehalten, sie anstelle metallischer Werkstoffe einzusetzen. Martin Jansen jedoch wollte den Ingenieuren einen Werkstoff mit einem völlig neuen Eigenschaftsprofil anbieten: eine temperaturstabile amorphe Keramik. Im Gegensatz zu so manchem Fachkollegen war Jansen davon überzeugt, dass es durch geschickte Wahl der chemischen Elemente möglich sein müsse, hinreichend stabile Netzwerke aufzubauen, die auch bei hohen Temperaturen amorph bleiben. Theoretisch sollten sich aus Silizium, Bor, Stickstoff und Kohlenstoff solche, wenn auch nicht thermodynamisch stabilen, so doch metastabilen dreidimensionalen Netzwerke aufbauen lassen. Die starken kovalenten Bindungen zwischen den Netzwerkpartnern sollten ein Umordnen der chemischen Bindungen unwahrscheinlich machen und somit die Kristallisation verhindern.

Martin Jansen baute solche Festkörper gezielt im Labor auf, indem er von einfachen Molekülen ausging, in denen die gewünschten Bindungen bereits "angelegt" waren. Daraus stellte er ein Polymer her, das sich unter Hitze zur gewünschten Keramik zersetzen lässt. Dieser Weg vom Molekül über das Polymer zum Festkörper war nicht nur eine neuartige Synthesestrategie, auch war mit der polymeren Zwischenstufe das Tor zur Anwendungstechnik weit aufgestoßen. Denn aus dem Polymer lassen sich Pulver oder dünne Schichten herstellen, aber auch Fasern ziehen.

Die daraus durch thermische Zersetzung gewonnenen amorphen Keramikfasern erfüllten die hohen Erwartungen der Forscher: Die Fasern bleiben nicht nur bis 1900°C stabil, sondern sind auch noch bis 1600°C an Luft einsetzbar, denn eine dünne Schutzschicht schützt sie vor Oxidation. Die neue Keramik ist überdies leicht und extrem beständig bei Temperaturwechsel. Mit der Entwicklung dieser Werkstoffklasse betrat Martin Jansen Neuland. Dabei handelt es sich nicht um eine Zufallsentdeckung, denn von Beginn an wurde auf die Herstellung amorpher metastabiler Netzwerke gezielt.

Möglich war diese Entwicklung nur, weil Grundlagenforschung, Anwendungstechnik und Industrie von Anfang an eng zusammen gearbeitet haben. Wenn auch zunächst die Hochtemperaturanwendungen wie Flugzeug- und Kraftwerksturbinen dominieren dürften, zeichnen sich jetzt schon weitere Einsatzmöglichkeiten ab. Die neue amorphe Keramik könnte im 21. Jahrhundert jene bedeutende Rolle einnehmen, die Stahl im 19. Jahrhundert hatte.

Die Entwicklung der amorphen Hochleistungskeramik als Werkstoffklasse zeigt, dass Grundlagenforschung, anwendungsoffen und im Netzwerk betrieben, neue Wege eröffnet, und so dazu beiträgt, die großen Zukunftsprobleme zu lösen. Für die Jury des Wissenschaftspreises ist dies der Paradefall eines erfolgreichen Wissens- und Technologietransfers vom Labor in die industrielle Praxis.

Martin Jansen studierte in den sechziger Jahren an der Universität Gießen Chemie, wo er auch 1973 promovierte. 1978 habilitierte er sich im Fach Anorganische Chemie, übernahm von 1981 bis 1987 einen Lehrstuhl an der Universität Hannover, dann von 1987 bis 1997 an der Universität Bonn. Seit 1998 ist er Direktor am Max-Planck-Institut für Festkörperforschung, Stuttgart, und leitet dort die Abteilung für Festkörperchemie. Seine Forschungsergebnisse sind inzwischen in die Standardlehrbücher eingegangen und wurden mehrfach mit Auszeichnungen gewürdigt: u.a. Gottfried-Wilhelm-Leibniz-Preis, Otto-Bayer-Preis, Alfred-Stock-Gedächtnis-Preis.

Weitere Informationen erhalten Sie von:

Dr. Angela Lindner
Stifterverband für die Deutsche Wissenschaft e.V.
Tel.: +49 2 01 84 01-158, Fax: -459
E-Mail: a.lindner@stifterverband.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.fkf.mpg.de
http://www.stifterverband.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Der gestapelte Farbsensor
17.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Gefragtes Werkstoff-Knowhow: Fraunhofer LBF baut Elastomer-Forschung aus
16.11.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte