Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektrochemische Abscheidung von nanoskaliertem Silizium in Ionischen Flüssigkeiten

21.04.2004


Der Arbeitsgruppe von Prof. Endres am Institut für Metallurgie der TU Clausthal ist es kürzlich als erste gelungen, bei Raumtemperatur in einer Ionischen Flüssigkeit nanoskaliertes Silizium herzustellen. Nanoskaliertes Silizium ist von Bedeutung für optische Sensoren oder Laser, bei denen die Wellenlänge für Absorption bzw. Emission allein durch Wahl der Kristallitgröße eingestellt werden könnte. Im Vergleich zu den etablierten physikalischen Herstellungsverfahren zeichnet sich ein elektrochemisches Verfahren durch seinen vergleichsweise einfachen experimentellen Aufbau aus. Mit dem Rastertunnelmikroskop und der in situ Tunnelspektroskopie konnte gezeigt werden, dass das abgeschiedene Silizium elementar und halbleitend anfällt [1].


Hochaufgelöstes rasterelektronenmikroskopisches Bild von Silizium (aus Siliziumtetrachlorid in einer Ionischen Flüssigkeit abgeschieden). Die kleinsten Kristallite sind nur wenige Nanometer groß.



Des Weiteren konnte die Gruppe von Prof. Endres als erste zeigen, dass Benzol in neuartigen ionischen Flüssigkeiten unter chemisch sehr milden Bedingungen elektropolymerisiert werden kann [2]. Das entstehende Polybenzol ist elektrochemisch aktiv und könnte in der Zukunft eventuell einmal für die Herstellung von Polymer-Leuchtdioden verwendet werden. Die Elektrochemie hat hier den Vorteil, dass der Oxidationszustand im Polymer, der neben der Kettenlänge die Wellenlänge für die optische Emission bestimmt, nahezu beliebig eingestellt werden kann. Vielleicht können so in Zukunft Polymer-Leuchtdioden einmal auf einfache Weise elektrochemisch hergestellt werden.



Hintergrund:
Seit etwa fünf Jahren beschäftigt man sich in der Grundlagenforschung mit so genannten Ionischen Flüssigkeiten. Dabei handelt es sich um niedrig schmelzende Salze mit Schmelzpunkten unterhalb von 100 Grad Celsius. Sie zeichnen sich durch außergewöhnliche physikalische Eigenschaften aus, wie z.B. vernachlässigbare Dampfdrucke selbst bei hohen Temperaturen, niedrige Viskositäten, hohe elektrische Leitfähigkeiten und sehr weite elektrochemische Fenster. Wegen der geringen Dampfdrucke können Ionische Flüssigkeiten durch Anlegen eines Vakuums leicht wasserfrei dargestellt werden, was bei konventionellen organischen Lösemitteln häufig eine Herausforderung ist. Ihre elektrochemischen Fenster können im Vergleich zu nur 1.23 Volt bei Wasser Werte von mehr als 6 Volt erreichen, womit die Vorteile auf der Hand liegen: in ionischen Flüssigkeiten kann man Substanzen oxidieren, die edler sind als Sauerstoff und Stoffe herstellen, die unedler sind als Wasserstoff.


Die Forschungen sind niedergelegt in zwei Veröffentlichungen, die im April und Mai 2004 erscheinen:
[1] S. Zein El Abedin, N. Borissenko, F. Endres, Electrochemistry Communications, Vol.6, Issue 5, May 2004 510 - 514
[2] S. Zein El Abedin, N. Borissenko, F. Endres, Electrochemistry Communications, Vol.6 , Issue 4, April 2004, 422 - 426

Weitere Informationen:
Technische Universität Clausthal
Institut für Metallurgie
Prof. Dr. Frank Endres
38678 Clausthal-Zellerfeld
Tel. 0 5323 72 3141
Fax. 0 5323 72 2460
email: frank.endres@tu-clausthal.de


Jochen Brinkmann | idw
Weitere Informationen:
http://www.imet.tu-clausthal.de/agfe

Weitere Berichte zu: Electrochemistry Emission Flüssigkeit Ionisch Silizium

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics