Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schweißnähte für noch mehr Power

02.09.2002


In Kraftwerken setzt das Material dem Wirkungsgrad und dem Umweltschutz noch Grenzen - Fraunhofer IWM prüft und optimiert Rohrverbindungen

Es ist extrem heiß, es herrscht ein Riesendruck, und Wasserdampf schießt durch die Rohre: Im Inneren eines Kraftwerkes bei 600 Grad Celsius ist eine stählerne Schleife rund um den Heizkessel schnell nicht mehr das, was sie war: Die Rohre strecken und verfestigen, dehnen und krümmen sich. Dabei würden noch höhere Temperaturen - zum Beispiel in Kohlekraftwerken - nicht nur den Wirkungsgrad steigern, sondern auch die Umweltbelastung mit Schadstoffen verringern. Das aber ist nur möglich, wenn die Rohre halten. Genau dies zu erreichen, ist Ziel eines Forschungsprojekts am Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg.

Knackpunkt sind die Schweißnähte: Sie verbinden Rohre aus besonders robustem, aber auch sehr teurem Stahl im heißen Kraftwerkskern mit anderen Stahlrohren, die zwar viel, aber eben nicht genug aushalten, im äußeren Kraftwerksbereich. Kein Leck, keine Verformung dieser Schweißnähte darf die Energiegewinnung beeinträchtigen und den Betrieb gefährden. Das Fraunhofer IWM analysiert und bewertet deshalb, wie Stähle unterschiedlicher Zusammensetzung - der Fachjargon unterscheidet zwischen austenitischen und ferritischen Stählen - am besten zusammenhalten.

Mit einer Schweißverbindung? Mit gewalzter Verbindung? Mit einer Reibschweißung oder einer heißgepressten Naht? Die Antwort geben die Fraunhofer-Mitarbeiter einmal mit dem Rechner. Der simuliert aufgrund der zuvor gemessenen Materialeigenschaften die Belastung und sagt für jedes Stückchen Stahlmischung vorher, wie es sich verhält, wenn’s spannt, zieht und zu reißen droht. Zum Anderen aber füttern die Fraunhofer-Forscher zwei Prüfanlagen mit den Rohren. Im Inneren der Anlagen werden die Rohre und besonders die Schweißnähte Bedingungen ausgesetzt, die zum Teil noch härter sind als im wahren Kraftwerksleben. Schließlich sollen die Rohre genauso lang halten wie das gesamte Kraftwerk, also gute 40 Jahre. "Nur wenn die Nähte der Belastung standhalten, lassen sich neue Kraftwerke noch wirtschaftlicher und umweltschonender betreiben", erläutert der Leiter des Freiburger Institutsteils, Thomas Hollstein. Im neuen deutschen Kohlekraftwerk in Niederaußem (Nordrhein-Westfalen) wurden die bisherigen Forschungsergebnisse der IWM-Mitarbeiter bereits erfolgreich umgesetzt. Die nächste Generation soll noch besser werden. Von den Erkenntnissen für die neue Kraftwerksgeneration würden, so Thomas Hollstein, außerdem auch Chemie- und Müllverbrennungsanlagen profitieren.

Ansprechpartner:
Thomas Götz
Telefon +49 (0) 7 61 / 51 42-1 53
Fax +49 (0) 7 61 / 51 42-1 10
goetz@iwm.fraunhofer.de

Thomas Götz | idw
Weitere Informationen:
http://www.iwm.fraunhofer.de/

Weitere Berichte zu: Kohlekraftwerk Kraftwerk POWeR Schweißnaht Wirkungsgrad

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie