Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gefüge metallischer Werkstoffe binnen Minuten umfassend charakterisieren

23.02.2001


Phasenverteilung in einer

Ti-5.8Mn-Probe


Verteilungsbild der Kristallorientierungen

der Ti-5.8Mn-Probe


Mit einem neuen Beugungsverfahren werden die Phasen und Kristallorienterungen im Rastermikroskop gemessen und ihre örtliche Verteilung in Farbbildern veranschaulicht. Sie spiegeln den
Herstellungsprozeß und den Einsatz von Werkstücken wider. Die Materaleigenschaften hängen stark von den Phasen und Orientierungen ab.

Die Eigenschaften metallischer Struktur- und Funktionswerkstoffe werden in erster Linie bestimmt durch die Verteilung der Phasen sowie durch die Verteilung und Ausrichtung der Kristallite, d.h. die "Textur" des Werkstoffs. Zur Bestimmung beider Eigenschaften wurden bislang in der Werkstofforschung separate Methoden eingesetzt. An der TU Clausthal entwickelten Professor Dr. Robert Schwarzer und seine Mitarbeiter ein Verfahren, mit welchem im Raster-Elektronenmikroskop aus der Messung der Kristallorientierung zugleich Phasenverteilung und lokale Textur erschlossen werden können. Innerhalb weniger Minuten zeichnet die Auswertesoftware eine farbige Darstellung der Phasenverteilungen und der Textur. Das Verfahren erlaubt eine Auflösung der Phasenverteilung bis in den Submikrometerbereich hinein, falls die Kristallgitterkonstanten der Phasen sich merklich unterscheiden. Dazu werden die experimentell gemessenen Beugungswinkel verglichen mit Simulationen verschiedener Legierungen. Aus der besten Übereinstimmung können die Phasen quantitativ berechnet sowie die Grenzflächen der Phasen bestimmt werden. Der Ingenieur "hält" das vollständige technische Profil binnen Minuten "in Händen". In der Dezemberausgabe der Fachzeitschrift "Materials Science and Technology", berichten R.A. Schwarzer, A.K. Singh und J. Sukkau über ihre Ergebnisse (Discrimination and mapping of phase distributions by automated crystal orientation measurement, Materials Science and Technology, November-December 2000, Vol. 16, S. 1389-1392, ISSN 0267-0836).

Praktisch erprobt haben die Autoren ihr Verfahren an kalt und warm gewalzten Titan-Magnesium-Legierungen, deren hexagonale und kubische Kristallitverteilung sie bis in den Prozentbereich feststellen konnten. Der hexagonale Kristallitanteil trägt in vielen metallischen Werkstoffen zur Versprödung aufgrund der stark reduzierten Anzahl von Gleitsystemen bei. Andererseits kann aber auch die Festigkeit zweiphasiger Werkstoffe durch Optimieren der Phasenanteile und der Textur erheblich gesteigert werden. Die Wissenschaftler studierten den Einfluß des Kalt- und Warmwalzens auf die Ausbildung der Kristallitform und auf die Textur. Sie stellten einen deutliche Abhängigkeit vom Magnesiumanteil fest.


Weitere Informationen:
Prof. Dr. Robert Schwarzer
Institut für Physik und Physikalische Technologien
Tel. 05323 72 2130
E-Mail: schwarzer@tu-clausthal.de

Jochen Brinkmann | idw

Weitere Berichte zu: Phasenverteilung Science Technology Textur

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics