Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hallesche und Leipziger Wissenschaftler erforschen oxidische Grenzflächen

06.11.2000


Das Bild zeigt eine Aufnahme einer dünnen

roten Kobaltoxid-Schicht mit kleinen metallischen weißgrauen

Kobalt-Clustern. Bildgröße: 150 nm x 150 nm, Höhe der

Kobalt-Cluster: 0,8 nm. Messung: Ina Sebastian, Bilddarstellung:

Alexander Kraus


Neue Forschergruppe der DFG in Halle

Am 27. Juni 2000 beschloss der Hauptausschuss der Deutschen Forschungsgemeinschaft (DFG), in Halle eine Forschergruppe "Oxidische Grenzflächen" einzurichten. Die neue Forschergruppe wird sich mit der Physik oxidischer Grenz- und Oberflächen und mit neuartigen Phänomenen in diesen Systemen beschäftigen. So wird die Basis für die Entwicklung neuer Materialien geschaffen, die in zukünftigen Anwendungen eine außerordentlich hohe Bedeutung erlangen können.
Neben Fachbereichen bzw. Fakultäten und dem Interdisziplinären Wissenschaftlichen Zentrum für Materialwissenschaften der Universitäten Halle und Leipzig kooperieren das Max-Planck-Institut für Mikrostrukturphysik und das Fraunhofer-Institut für Werkstoffmechanik in Halle mit der Forschergruppe.

In 10 Teilprojekten werden die Bereiche "Struktur und Magnetismus" sowie "Transport und Dynamik" bearbeitet. Beteiligt sind der Fachbereich Physik der Martin-Luther-Universität (dem auch der Sprecher Prof. Dr. Henning Neddermeyer angehört) das in Halle ansässige MPI für Mikrostrukturphysik, die Fakultäten für Chemie und Mineralogie sowie für Physik und Geowissenschaften der Universität Leipzig.
Außer den direkt beteiligten Institutionen sind Kooperationen mit dem Interdisziplinären Wissenschaftlichen Zentrum für Materialwissenschaften der Martin-Luther-Universität und mit dem halleschen Fraunhofer-Institut für Werkstoffmechanik vorgesehen.

Die Forschergruppe ist ein Instrument der DFG zur mittelfristigen Förderung von Forschungsaktivitäten mit einer regulären Laufzeit von 6 Jahren. In der nun begonnenen Förderperiode wurden von der DFG Mittel für 2 Jahre bewilligt und für ein weiteres Jahr in Aussicht gestellt. Die Bewilligung umfasst Personalmittel für die Bezahlung von 14 wissenschaftlichen Mitarbeitern und Doktoranden, Investitionsmittel von über 1 Mio. DM sowie Mittel für Verbrauch, Reisen und für die Bezahlung des Aufenthalts von Gästen. Darüber hinaus wird die Forschergruppe durch die Universitäten und die Max-Planck-Gesellschaft gefördert.

Unter "Grenzflächen" versteht man die Berührungsbereiche zwischen zwei Oxiden, zwischen einem Oxid und einem Metall oder zwischen einem Oxid und dem Nichts - sprich Vakuum. Experimente mit dem Rasteltunnelmikroskop (siehe Abbildung), die in einem der Teilprojekte durchgeführt werden, sollen Aufschlüsse über die atomare und die elektronische Struktur der Grenz- und Oberflächen geben, von denen die potenzielle Nutzung der elektrischen Transporteigenschaften der Oxidschichten abhängig ist.

Anwendungsmöglichkeiten werden vor allem in der Magnetoelektronik und Sensorik sowie in ferroelektrischen Speichern erwartet - die Forschungsresultate können daher langfristig in der Informationstechnologie und in der Umwelttechnik genutzt werden. Der jetzige Umsatz auf diesem Gebiet beträgt weltweit jährlich 100 Mrd. US$ und umfasst derzeit hauptsächlich Halbleiterbausteine.

Am Donnerstag, dem 9. November 2000, findet anlässlich der Eröffnung der Forschergruppe "Oxidische Grenzflächen" im Großen Physikhörsaal des FB Physik am Friedemann-Bach-Platz 6 in Halle ein Festkolloquium statt:

Programm
14:00 Uhr-14:10 Uhr Begrüßung

14:10 Uhr-15:00 Uhr
Prof. Dr. Günter Reiss (Universität Bielefeld)
Spinabhängige Transporteigenschaften und Struktur in GMR- und TMR-Schichtsystemen

15:00 Uhr-15:50 Uhr
PD Dr. Ingrid Mertig (Technische Universität Dresden)
Theorie des spinabhängigen Transports

15:50 Uhr-16:20 Uhr Pause

16:20 Uhr-17:10 Uhr
Prof. Dr. Hartmut Zabel (Ruhr-Universität Bochum)
Oxidbildung auf epitaktischen Metallfilmen

17:10 Uhr-18:00 Uhr
Prof. Dr. Wolfgang Moritz (Ludwig-Maximilians-Universität München)
Struktur von Oxidoberflächen untersucht mit Elektronen- und Röntgenbeugung

Nähere Informationen:
Prof. Dr. Henning Neddermeyer
Tel.: 0345 / 552 55 60
Fax: 0345 / 552 71 60
E-Mail: neddermeyer@physik.uni-halle.de

Ingrid Godenrath | idw

Weitere Berichte zu: DFG Grenzfläche Interdisziplinär

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie