Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atomar dünne Solarzellen

10.03.2014

Ultradünne Schichten aus Wolfram und Selen wurden an der TU Wien hergestellt. Messungen zeigen, dass sie als semi-transparente, flexible Solarzellen eingesetzt werden können.

Dünner geht es wirklich nicht mehr: Nur aus einer einzigen Atomlage besteht das Kohlenstoff-Material Graphen, das ganz besondere elektronische Eigenschaften aufweist.


Mikroskopbild von WSe2-Proben, mit Elektroden-Anschluss. TU Wien


Thomas Müller, Marco Furchi, Andreas Pospischil (v.l.n.r.) TU Wien

Nun zeigt sich, dass auch andere Materialien, wenn man sie in einer einzelnen oder in ganz wenigen Atomschichten anordnet, aufregende neue technologische Möglichkeiten eröffnen. An der TU Wien konnte nun erstmals eine Diode aus Wolframdiselenid hergestellt werden. Experimente zeigen, dass dieses Material geeignet ist, um hauchdünne, biegsame Solarzellen anzufertigen. Sogar biegsame Displays sollen möglich werden.

Ganz neue Materialeigenschaften bei dünnen Schichten

Spätestens seit 2010 der Physik-Nobelpreis für die Herstellung von Graphen vergeben wurde, galten die „zweidimensionalen Kristalle“ aus Kohlenstoffatomen als große Zukunftshoffnung der Materialforschung. Im Jahr 2013 wurde die Graphen-Forschung von der EU als Flaggschiff-Projekt ausgewählt und mit einer Milliarde Euro gefördert. Graphen hält enormen mechanischen Kräften stand und es hat wunderbare elektro-optische Eigenschaften: Mit Graphen als Lichtdetektor kann man in winzigen Sekundenbruchteilen optische Signale in elektrische Signale umwandeln.

Eine wichtige, damit eng verwandte Anforderung kann Graphen allerdings nicht erfüllen: Es ist nicht als Solarzelle verwendbar. „Die elektronischen Zustände in Graphen sind für den Einsatz als Solarzelle nicht besonders gut geeignet“, erklärt Thomas Müller vom Institut für Photonik der TU Wien. Er begann mit seinem Team daher, andere Materialien zu untersuchen, aus denen sich ähnlich wie Graphen ultradünne Schichten aus nur einer oder aus wenigen Atomlagen herstellen lassen, die aber noch bessere elektronische Eigenschaften aufweisen.

Die Wahl fiel auf Wolframdiselenid: Es besteht aus einer Schicht Wolfram-Atome, die oberhalb und unterhalb mit Selen-Atomen verbunden sind. Das Material absorbiert Licht, ähnlich wie Graphen – in Wolframdiselenid lässt sich damit allerdings elektrische Leistung generieren.

Die dünnsten Solarzellen der Welt

Weil die Schicht so extrem dünn ist, lässt sie 95% des Lichts durch, doch von den verbleibenden fünf Prozent an Lichtleistung, die vom Material absorbiert wird, kann ein Zehntel in elektrische Leistung umgewandelt werden. Der interne Wirkungsgrad des Materials ist somit relativ hoch. Will man einen größeren Anteil des einfallenden Lichtes nutzen, könnte man mehrere dieser ultradünnen -Schichten übereinanderpacken – doch die hohe Transparenz ist manchmal durchaus gewünscht: „Wir können uns etwa Solarzellen-Schichten auf Glasfassaden vorstellen, die das meiste Licht ins Gebäude lassen und trotzdem Elektrizität generieren“, meint Thomas Müller.

Herkömmliche Solarzellen sind heute meist aus Silizium, sie sind relativ dick und unflexibel. Auch organische Materialien werden für opto-elektronische Anwendungen eingesetzt, doch sie altern schnell. „Ein großer Vorteil der zweidimensionalen Strukturen aus einzelnen Atomlagen ist, dass sie kristallin sind. Kristallstrukturen verleihen Stabilität“, erklärt Thomas Müller.

Die Wolframdiselenid-Schicht kann nicht nur Sonnenlicht in Strom umwandeln, sie kann auch umgekehrt mit Hilfe von Stromzufuhr zum Leuchten gebracht werden. „Wir erhoffen uns damit eines Tages dünne, flexible Displays, oder auch großflächig-diffuse Raumbeleuchtung“, sagt Thomas Müller.

International kompetitives Feld

Die Ergebnisse der Forschungsarbeiten an der TU Wien wurden nun im renommierten Fachjournal „Nature Nanotechnology“ veröffentlicht. Wie kompetitiv die Forschung in diesem Bereich ist, zeigt sich daran, dass in der selben Ausgabe des Journals auch noch zwei andere Beiträge veröffentlicht wurden, in denen ganz ähnliche Ergebnisse präsentiert werden: Auch am MIT (Cambridge, USA) und der University of Washington (Seattle, USA) hat man das Potenzial von Wolframdiselenid erkannt und kam zeitgleich zu analogen Ergebnissen. Kein Zweifel: So wie die Graphen-Forschung heute an vielen Forschungsinstituten auf der ganzen Welt ihren festen Platz hat, werden auch Materialien wie Wolframdiselenid in der Materialwissenschaft weltweit eine wichtige Rolle spielen.

Rückfragehinweis:
Prof. Thomas Müller
Institut für Photonik
Technische Universität Wien
Gusshausstraße 27-29, 1040 Wien
T: +43-1-58801-38739
thomas.mueller@tuwien.ac.at

Weitere Informationen:

http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2014/solarzellen/

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

nachricht Stahl ist nicht gleich Stahl: Informatiker und Materialforscher optimieren Werkstoffklassifizierung
19.02.2018 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics